|
| 1 | +import Jama.Matrix; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | + |
| 5 | +/** |
| 6 | + * Created by cheta_000 on 5/22/2015. |
| 7 | + * Implements the PLA algorithm with weights initialized by linear regression |
| 8 | + */ |
| 9 | + |
| 10 | +public class PLA { |
| 11 | + |
| 12 | + public static void main(String[] args) { |
| 13 | + int N = 10; |
| 14 | + ArrayList<Double> errorRatesInitially = new ArrayList<>(); |
| 15 | + ArrayList<Integer> iterations = new ArrayList<>(); |
| 16 | + for (int j = 0; j < 1000; j++) { |
| 17 | + // Generate f(x) |
| 18 | + double[] realLine = LinRegImplementation.genRandomLine(); |
| 19 | + |
| 20 | + // Generate training data |
| 21 | + double[][] training = LinRegImplementation.genRandomPoints(N, 2); |
| 22 | + double[][] trainingClass = LinRegImplementation.getPointClasses(training, realLine); |
| 23 | + |
| 24 | + // Initialize weights |
| 25 | + Matrix inputs = Matrix.constructWithCopy(training); |
| 26 | + Matrix output = Matrix.constructWithCopy(trainingClass); |
| 27 | + Matrix weights = inputs.inverse().times(output); |
| 28 | + |
| 29 | +// System.out.println("Initial error: " + LinRegImplementation.evaluate(inputs, trainingClass, weights) + ", "); |
| 30 | + errorRatesInitially.add(LinRegImplementation.evaluate(inputs, trainingClass, weights)); |
| 31 | + |
| 32 | + // Get error and start iterations |
| 33 | + double[] error = getErrorArray(weights, inputs, output); |
| 34 | + int wrongIndex = findWrongIndex(error); |
| 35 | + int counter = 0; |
| 36 | + while(wrongIndex != -1) { |
| 37 | + counter++; |
| 38 | + weights.getArray()[0][0] += error[wrongIndex]*inputs.getArray()[wrongIndex][0]; |
| 39 | + weights.getArray()[1][0] += error[wrongIndex]*inputs.getArray()[wrongIndex][1]; |
| 40 | + weights.getArray()[2][0] += error[wrongIndex]*inputs.getArray()[wrongIndex][2]; |
| 41 | + error = getErrorArray(weights, inputs, output); |
| 42 | + wrongIndex = findWrongIndex(error); |
| 43 | + } |
| 44 | + iterations.add(counter); |
| 45 | +// System.out.println("Iterations for PLA to perfect: " + counter); |
| 46 | + } |
| 47 | + System.out.println("Average initial error: " + errorRatesInitially.stream().mapToDouble(Double::doubleValue).average().getAsDouble()); |
| 48 | + System.out.println("Average num of iterations: " + iterations.stream().mapToInt(Integer::intValue).average().getAsDouble()); |
| 49 | + |
| 50 | + } |
| 51 | + |
| 52 | + public static double[] getErrorArray(Matrix weights, Matrix inputs, Matrix outputs) { |
| 53 | + double[][] realClass = outputs.getArray(); |
| 54 | + double[] estimOutput = LinRegImplementation.predict(inputs, weights); |
| 55 | + double[] error = new double[realClass.length]; |
| 56 | + for (int i = 0; i < realClass.length; i++) { |
| 57 | + error[i] = realClass[i][0] - estimOutput[i]; |
| 58 | + } |
| 59 | + return error; |
| 60 | + } |
| 61 | + |
| 62 | + public static int findWrongIndex(double[] error) { |
| 63 | + for (int i = 0; i < error.length; i++) { |
| 64 | + if (error[i] != 0) { |
| 65 | + return i; |
| 66 | + } |
| 67 | + } |
| 68 | + return -1; |
| 69 | + } |
| 70 | + |
| 71 | + |
| 72 | +} |
0 commit comments