-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
417 lines (417 loc) · 15.8 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
library(igraph)
###
# 2. LOAD DATA
###
# This lab uses SSL.dat (social interaction) and TSL.dat (task
# interaction) from the S641 Semester 1 class in student_nets.
# The class is a biology 2 class at a public high school.
# load data:
data(studentnets.S641, package = "NetData")
# Reduce to non-zero edges and build a graph object
s641_full_nonzero_edges <- subset(s641_full_data_frame, (social_tie > 0 | task_tie > 0))
head(s641_full_nonzero_edges)
s641_full <- graph.data.frame(s641_full_nonzero_edges)
summary(s641_full)
# Create sub-graphs based on edge attributes and remove isolates
s641_social <- delete.edges(s641_full, E(s641_full)[get.edge.attribute(s641_full,name = "social_tie")==0])
s641_social <- delete.vertices(s641_social, V(s641_social)[degree(s641_social)==0])
summary(s641_social)
s641_task <- delete.edges(s641_full, E(s641_full)[get.edge.attribute(s641_full,name = "task_tie")==0])
s641_task <- delete.vertices(s641_task, V(s641_task)[degree(s641_task)==0])
summary(s641_task)
# Look at the plots for each sub-graph
social_layout <- layout.fruchterman.reingold(s641_social)
plot(s641_social, layout=social_layout, edge.arrow.size=.2)
# Note: click on the graph and then use the drop down menu to
# save any plot you like -- it will save as a pdf.
task_layout <- layout.fruchterman.reingold(s641_task)
plot(s641_task, layout=task_layout, edge.arrow.size=.2)
# Question #1 - what can you say about network centralization from these graphs?
### Task-layout graph is much more centralized than social_layout graph.
### 22 is the task center
### 22, 19, 21, 18, and 16 are the social centers
###
# 3. CALCULATE CENTRALITY MEASURES FOR SOCIAL
###
indegree_social <- degree(s641_social, mode='in')
indegree_social
outdegree_social <- degree(s641_social, mode='out')
outdegree_social
s641_social_undirected <- as.undirected(s641_social, mode='collapse')
ev_obj_social <- evcent(s641_social_undirected)
eigen_social <- ev_obj_social$vector
eigen_social
s641_social
?evcent
ev_obj_social <- evcent(s641_social, directed=T)
ev_obj_social
eigen_social_in <- evcent(s641_social, directed=T)$vector
eigen_social_in
?as.undirected
?evcent
str(evcent(s641_social, directed=T))
s641_social
str(evcent(s641_social, directed=T))
central_social <- data.frame(V(s641_social)$name, indegree_social, outdegree_social, incloseness_social, outcloseness_social, betweenness_social, eigen_social)
incloseness_social <- closeness(s641_social, mode='in')
incloseness_social
# Out-closeness
outcloseness_social <- closeness(s641_social, mode='out')
# the edge.betweenness() function.)
betweenness_social <- betweenness(s641_social)
central_social <- data.frame(V(s641_social)$name, indegree_social, outdegree_social, incloseness_social, outcloseness_social, betweenness_social, eigen_social)
central_social
barplot(central_social$indegree_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$outdegree_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$incloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$outcloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$betweenness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$eigen_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$incloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$outcloseness_social, names.arg=central_social$V.s641_social..name)
s641_full_nonzero_edges
plot(s641_social, layout=social_layout, edge.arrow.size=.2)
barplot(central_social$indegree_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$outdegree_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$incloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$incloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$outcloseness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$betweenness_social, names.arg=central_social$V.s641_social..name)
barplot(central_social$eigen_social, names.arg=central_social$V.s641_social..name)
cor(central_social[,2:7])
# Indegree
# We should have 20 entries, indicating 2 isolates.
indegree_task <- degree(s641_task, mode='in')
indegree_task
# Outdegree
outdegree_task <- degree(s641_task, mode='out')
outdegree_task
# In-closeness
incloseness_task <- closeness(s641_task, mode='in')
incloseness_task
# Out-closeness
outcloseness_task <- closeness(s641_task, mode='out')
outcloseness_task
# Betweenness. Note that the closeness measures arent very high
# for node 22, but the betweenness is off the charts.
betweenness_task <- betweenness(s641_task)
betweenness_task
# Eigenvector
s641_task_undirected <- as.undirected(s641_task, mode='collapse')
ev_obj_task <- evcent(s641_task_undirected)
eigen_task <-ev_obj_task$vector
eigen_task
# Generate a data frame with all centrality values
central_task <- data.frame(V(s641_task)$name, indegree_task, outdegree_task, incloseness_task, outcloseness_task, betweenness_task, eigen_task)
central_task
central_task[order(-central_task$indegree_task),]
# Outdegree: 22, 18 and 17
central_task[order(-central_task$outdegree_task),]
# Incloseness: 22, 18 and 17
central_task[order(-central_task$incloseness_task),]
barplot(central_task$indegree_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$outdegree_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$indegree_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$outdegree_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$incloseness_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$outcloseness_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$betweenness_task, names.arg=central_task$V.s641_task..name)
barplot(central_task$eigen_task, names.arg=central_task$V.s641_task..name)
connectednodes_social = as.numeric(levels(central_social$V.s641_social..name))[central_social$V.s641_social..name]
connectednodes_task = as.numeric(levels(central_task$V.s641_task..name))[central_task$V.s641_task..name]
length(connectednodes_social)
length(connectednodes_task)
?lm
numWeights
numWeights <- function(x) 10*x+x^2*(36/x-1)+x
numWeights
function(1)
numWeights(1)
numWeights(36)
numWeights(18)
plot(1:36, numWeights(1:36))
which.min(numWeights(1:36))
which.max(numWeights(1:36))
numWeights <- function(x) {
if (x <= 16)
10*x+x^2*(36/x-1)+x
else
10*x+x*(36-x)+(36-x)*1
}
plot(1:36, numWeights(1:36))
plot(1:36, unlist(lapply(1:36, numWeights)))
numWeights <- function(x) {
if (x <= 16)
10*x+x^2*(36/x-1)+x
else
10*x+x*(36-x)+(36-x)*1
}
plot(1:36, unlist(lapply(1:36, numWeights)))
which.min(numWeights(1:36)) # min is at 1 node per layer
which.max(numWeights(1:36)) # max is at 23 nodes
unlist(lapply(1:36, numWeights))
numWeights
10*23 + 23*16 + 16*1
which.min(unlist(lapply(1:36, numWeights))) # min is at 1 node per layer
which.max(unlist(lapply(1:36, numWeights))) # max is at 23 nodes
10*23 + 23*16 + 16*1
10*23 + 23*13 + 16*1
10*23 + 23*13 + 13*1
10*23 + 22*14 + 14*1
10*22 + 22*14 + 14*1
x <- 22
10*x+x^2*(36/x-1)+x
10*x+x*(36-x)+(36-x)*1
rm(x)
x
numWeights(7)
numWeights <- function(x) {
if (x <= 16)
10(x-1)+(x-1)^2(36/x-1)+36/x(x-1)+x
else
10(x-1)+(x-1)(36-x-1)+(36-x-1)+36-x
}
unlist(lapply(1:36, numWeights))
numWeights <- function(x) {
if (x <= 16)
10*(x-1)+(x-1)^2*(36/x-1)+36/x*(x-1)+x
else
10*(x-1)+(x-1)*(36-x-1)+(36-x-1)+36-x
}
unlist(lapply(1:36, numWeights))
x <- 2
10*(x-1)+(x-1)^2*(36/x-1)+36/x*(x-1)+x
10*(x-1)
(x-1)^2
(x-1)^2*(36/x-1)
(x-1)^2*(36/x-1)
(x-1)^2*(36/x-1) + 36/x
(x-1)^2*(36/x-1) + 36/x*(x-1)
(x-1)^2*(36/x-1) + 36/x*(x-1)+x
(x-1)^2*(36/x-1) + 36/x*(x-1)+x
(36/x-1) + 36/x*(x-1)+x
(36/x-1) + 36/x+x
(x-1)^2*(36/x-1) + 36/x*(x-1)+x
numWeights <- function(x) {
if (x <= 16)
10*(x-1)+(x-1)^2*(36/x-1)+(36/x-1)*(x-1)+x
else
10*(x-1)+(x-1)*(36-x-1)+(36-x-1)+36-x
}
numWeights(1)
numWeights(2)
unlist(lapply(1:36, numWeights))
which.min(unlist(lapply(1:36, numWeights))) # min is at 1 node per layer
which.max(unlist(lapply(1:36, numWeights))) # max is at 23 nodes
numWeights(220)
numWeights(22)
library(data.table)
dt <- data.table(a=runif(10E7), b=runif(10E7))
dt[,mean(pmin(a, b))]
dt <- data.table(a=runif(10E4), b=runif(10E4))
dt[,mean(pmin(a, b))]
dt[,plot(a)]
dt[,plot(b)]
source('C:/Users/chemishra/Desktop/Intern Work/DoS Chinese Cities/methods.R')
setwd("../Dropbox/College/3_Third Year/Summer Learning/Learning From Data/")
test1 <- read.csv("hw5-6-7Programs/testFile1.csv")
tests <- lapply(1:6, function(i) read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv")))
tests <- lapply(1:5, function(i) read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv")))
tests
tests <- lapply(1:5, function(i) read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), headers=F))
?read.csv
tests <- lapply(1:5, function(i) read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F))
tests
tests <- lapply(1:5, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
library(data.table)
tests <- lapply(1:5, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
tests
lapply(tests, function(dt) dt[,V6:=NULL])
tests <- lapply(tests, function(dt) dt[,V6:=NULL])
tests
lapply(tests, function(dt) dt[,V6:=V3 == V5])
lapply(1:5, function(i) tests[[i]][,"testRunNum":=i])
test <- rbindlist(tests)
test
?facet.grid
?facet
?facet.wrap
library(ggplot2S)
library(ggplot2)
ggplot(test, aes(V1, V2, fill=V6)) +
geom_point() +
facet_wrap(testRunNum)
ggplot(test, aes(V1, V2, fill=V6)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V6)) +
geom_point() +
facet_wrap(~testRunNum)
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
lapply(tests, function(dt) dt[,V6:=V3 == V5])
lapply(1:6, function(i) tests[[i]][,"testRunNum":=i])
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, col=V6)) +
geom_point() +
facet_wrap(~testRunNum)
test
ggplot(test, aes(V1, V2, col=V3, size=V6)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V3, size=-V6)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V3, shape=)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V3, shape=V6)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V3, shape=V6, size=2)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, col=V3, shape=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
tests
lapply(tests, function(dt) dt[,V6:=V3 == V6])
lapply(1:6, function(i) tests[[i]][,"testRunNum":=i])
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, col=V3, shape=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=V3, col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=V3, col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
?aes
ggplot(test, aes(V1, V2, shape=factor(V5), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
lapply(tests, function(dt) dt[,V6:=V3 == V6])
lapply(1:6, function(i) tests[[i]][,"testRunNum":=i])
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V5), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
invisible(lapply(tests, function(dt) dt[,V6:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V5), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V6), col=V4, size=3)) +
facet_wrap(~testRunNum)
geom_point() +
ggplot(test, aes(V1, V2, shape=factor(V6), col=V4, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V6), col=V6, size=3)) +
facet_wrap(~testRunNum)
geom_point() +
ggplot(test, aes(V1, V2, shape=factor(V6), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
test
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
tests
invisible(lapply(tests, function(dt) dt[,V7:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
test
ggplot(test, aes(V1, V2, shape=factor(V7), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V7), col=V6)) +
facet_wrap(~testRunNum)
geom_point() +
ggplot(test, aes(V1, V2, shape=factor(V7), col=V6)) +
geom_point() +
facet_wrap(~testRunNum)
i
i
i
ggplot(test, aes(V1, V2, shape=factor(V7), col=V6, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
test
ggplot(test, aes(V1, V2, shape=factor(V7), col=V4, size=3)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factorV3, col=V4, size=V7)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=V3, col=V4, size=V7)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=V7)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(-V3), col=V4, size=V7)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=-V7)) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(V7))) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(4,6))
test
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
invisible(lapply(tests, function(dt) dt[,V7:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
invisible(lapply(tests, function(dt) dt[,V7:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
invisible(lapply(tests, function(dt) dt[,V7:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))
tests <- lapply(1:6, function(i) data.table(read.csv(paste0("hw5-6-7Programs/testFile", i, ".csv"), header=F)))
invisible(lapply(tests, function(dt) dt[,V7:=V3 == V6]))
invisible(lapply(1:6, function(i) tests[[i]][,"testRunNum":=i]))
test <- rbindlist(tests)
ggplot(test, aes(V1, V2, shape=factor(V3), col=V4, size=factor(-1*V7))) +
geom_point() +
facet_wrap(~testRunNum) +
scale_size_discrete(range=c(2,3))