-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·227 lines (167 loc) · 7.73 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
from typing import List, Dict
from argparse import ArgumentParser
import os
import logging
from math import log
import numpy
import pandas
import torch
from sklearn.metrics import matthews_corrcoef, roc_auc_score
from scipy.stats import pearsonr
from torch.utils.data import DataLoader
from torch.optim import Adam
from seqwise.dataset import SequenceDataset
from seqwise.model import (AbsposReswiseModel,
OutersumModel,
FlatteningModel,
RelativePositionEncoder,
AbsolutePositionEncodingModel,
OutersumModel)
arg_parser = ArgumentParser(description="train a model and output the results")
arg_parser.add_argument("model_type", help="must be relposenc/absposenc/abspos/outersum/flattening")
arg_parser.add_argument("train_file", help="HDF5 file with training data")
arg_parser.add_argument("valid_file", help="HDF5 file with validation data")
arg_parser.add_argument("test_file", help="HDF5 file with test data")
arg_parser.add_argument("results_file", help="CSV file where results will be stored")
arg_parser.add_argument("--batch_size", "-b", type=int, default=64)
arg_parser.add_argument("--epoch-count", "-e", type=int, default=100)
arg_parser.add_argument("--classification", "-c", action="store_const", const=True, default=False)
arg_parser.add_argument("--blosum", help="use blosum62 encoding instead of one-hot encoding", action="store_const", const=True, default=False)
_log = logging.getLogger(__name__)
def get_model(model_type: str, classification: bool):
if model_type == "relposenc":
return RelativePositionEncoder(classification)
elif model_type == "absposenc":
return AbsolutePositionEncodingModel(classification)
elif model_type == "abspos":
return AbsposReswiseModel(classification)
elif model_type == "outersum":
return OutersumModel(classification)
elif model_type == "flattening":
return FlatteningModel(classification)
else:
raise ValueError(f"unknown model: {model_type}")
def store_metrics(path: str, phase_name: str, epoch_index: int, value_name: str, value: float):
column_name = f"{phase_name} {value_name}"
if os.path.isfile(path):
table = pandas.read_csv(path)
else:
table = pandas.DataFrame({"epoch": [epoch_index], column_name: value})
table.loc[epoch_index, "epoch"] = epoch_index
table.loc[epoch_index, column_name] = value
table.to_csv(path, index=False)
_log.debug(f"store {column_name}, {value}")
def store_individual(path: str, ids: List[str], true_ba: List[int], pred_ba: List[float]):
pandas.DataFrame({"ID": ids, "true BA": true_ba, "predicted BA": pred_ba}).to_csv(path, index=False)
def epoch(model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
data_loader: DataLoader,
epoch_index: int,
metrics_path: str,
phase_name: str,
classification: bool):
if classification:
loss_func = torch.nn.CrossEntropyLoss(reduction='mean')
else:
loss_func = torch.nn.MSELoss(reduction='mean')
affinity_treshold = 1.0 - log(500) / log(50000)
epoch_loss = 0.0
epoch_true = []
epoch_true_cls = []
epoch_pred = []
epoch_pred_cls = []
ids = []
for input_, true, id_ in data_loader:
optimizer.zero_grad()
output = model(input_)
batch_loss = loss_func(output, true)
batch_loss.backward()
optimizer.step()
batch_size = true.shape[0]
epoch_loss += batch_loss.item() * batch_size
if classification:
epoch_pred += output.tolist()
epoch_true += true.tolist()
else:
epoch_pred += output[..., 0].tolist()
epoch_true += true[..., 0].tolist()
ids.append(id_)
if classification:
auc = roc_auc_score(epoch_true, epoch_pred)
mcc = matthews_corrcoef(epoch_true, torch.argmax(epoch_pred, dim=-1))
else:
pcc = pearsonr(epoch_true, epoch_pred).statistic
store_metrics(metrics_path, phase_name, epoch_index, "pearson correlation", pcc)
true_cls = numpy.array(epoch_true) > affinity_treshold
pred_cls = numpy.array(epoch_pred) > affinity_treshold
auc = roc_auc_score(true_cls, epoch_pred)
mcc = matthews_corrcoef(true_cls, pred_cls)
epoch_loss /= len(epoch_true)
store_metrics(metrics_path, phase_name, epoch_index, "ROC AUC", auc)
store_metrics(metrics_path, phase_name, epoch_index, "matthews correlation", mcc)
store_metrics(metrics_path, phase_name, epoch_index, "loss", epoch_loss)
def valid(model: torch.nn.Module,
data_loader: DataLoader,
epoch_index: int,
metrics_path: str,
phase_name: str,
classification: bool):
if classification:
loss_func = torch.nn.CrossEntropyLoss(reduction='mean')
else:
loss_func = torch.nn.MSELoss(reduction='mean')
affinity_treshold = 1.0 - log(500) / log(50000)
valid_loss = 0.0
valid_true = []
valid_true_cls = []
valid_pred = []
valid_pred_cls = []
with torch.no_grad():
for input_, true, id_ in data_loader:
output = model(input_)
batch_loss = loss_func(output, true)
batch_size = true.shape[0]
valid_loss += batch_loss.item() * batch_size
if classification:
valid_pred += output.tolist()
valid_true += true.tolist()
else:
valid_pred += output[..., 0].tolist()
valid_true += true[..., 0].tolist()
if classification:
auc = roc_auc_score(valid_true, valid_pred)
mcc = matthews_corrcoef(valid_true, torch.argmax(valid_pred, dim=-1))
else:
pcc = pearsonr(valid_true, valid_pred).statistic
store_metrics(metrics_path, phase_name, epoch_index, "pearson correlation", pcc)
true_cls = numpy.array(valid_true) > affinity_treshold
pred_cls = numpy.array(valid_pred) > affinity_treshold
auc = roc_auc_score(true_cls, valid_pred)
mcc = matthews_corrcoef(true_cls, pred_cls)
valid_loss /= len(valid_true)
store_metrics(metrics_path, phase_name, epoch_index, "ROC AUC", auc)
store_metrics(metrics_path, phase_name, epoch_index, "mathews correlation", mcc)
store_metrics(metrics_path, phase_name, epoch_index, "loss", valid_loss)
def train(model: torch.nn.Module,
metrics_path: str,
train_data_loader: DataLoader,
valid_data_loader: DataLoader,
test_data_loader: DataLoader,
epoch_count: int,
classification: bool):
optimizer = Adam(model.parameters(), lr=0.001)
for epoch_index in range(epoch_count):
epoch(model, optimizer, train_data_loader, epoch_index, metrics_path, "train", classification)
valid(model, valid_data_loader, epoch_index, metrics_path, "valid", classification)
valid(model, test_data_loader, epoch_index, metrics_path, "test", classification)
if __name__ == "__main__":
args = arg_parser.parse_args()
train_dataset = SequenceDataset(args.train_file, args.classification)
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valid_dataset = SequenceDataset(args.valid_file, args.classification)
valid_data_loader = DataLoader(valid_dataset, batch_size=args.batch_size)
test_dataset = SequenceDataset(args.test_file, args.classification)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size)
model = get_model(args.model_type, args.classification)
train(model, args.results_file, train_data_loader, valid_data_loader, test_data_loader, args.epoch_count, args.classification)