|
1 | | -# RPC Transport demo |
| 1 | +# RPC Transport for MCP |
| 2 | + |
| 3 | +Example showing an `Agent` calling an `McpAgent` within the same worker using a custom RPC transport. |
| 4 | + |
| 5 | +## Why RPC Transport? |
| 6 | + |
| 7 | +If your MCP server and your agent/client are both deployed to the Cloudflare developer platform, our RPC transport is the fastest way to connect them: |
| 8 | + |
| 9 | +- **No network overhead** - Direct function calls instead of HTTP |
| 10 | +- **Simpler** - No endpoints to configure, no connection management, no authentication. |
| 11 | + |
| 12 | +This is very useful for internal applications. You can define `tools`, `prompts` and `resources` in your MCP server, expose that publically to your users, and also power your own `Agent` from the same `McpAgent`. |
| 13 | + |
| 14 | +## How it works |
| 15 | + |
| 16 | +Both the agent (MCP client) and MCP server can exist in the same Worker. |
| 17 | + |
| 18 | +The MCP server is just a regular `McpAgent`: |
| 19 | + |
| 20 | +```typescript |
| 21 | +export class MyMCP extends McpAgent<Env, State, {}> { |
| 22 | + server = new McpServer({ |
| 23 | + name: "Demo", |
| 24 | + version: "1.0.0" |
| 25 | + }); |
| 26 | + |
| 27 | + async init() { |
| 28 | + this.server.tool( |
| 29 | + "add", |
| 30 | + "Add to the counter, stored in the MCP", |
| 31 | + { a: z.number() }, |
| 32 | + async ({ a }) => { |
| 33 | + this.setState({ ...this.state, counter: this.state.counter + a }); |
| 34 | + return { |
| 35 | + content: [ |
| 36 | + { |
| 37 | + text: `Added ${a}, total is now ${this.state.counter}`, |
| 38 | + type: "text" |
| 39 | + } |
| 40 | + ] |
| 41 | + }; |
| 42 | + } |
| 43 | + ); |
| 44 | + } |
| 45 | +} |
| 46 | +``` |
| 47 | + |
| 48 | +The agent calls out to the MCP server using Cloudflare's RPC bindings: |
| 49 | + |
| 50 | +```typescript |
| 51 | +export class Chat extends AIChatAgent<Env> { |
| 52 | + async onStart(): Promise<void> { |
| 53 | + // Connect to MyMCP server via RPC |
| 54 | + await this.addRpcMcpServer("test-server", "MyMCP"); |
| 55 | + } |
| 56 | + |
| 57 | + async onChatMessage(onFinish: StreamTextOnFinishCallback<ToolSet>) { |
| 58 | + // MCP tools are now available |
| 59 | + const allTools = this.mcp.getAITools(); |
| 60 | + |
| 61 | + const result = streamText({ |
| 62 | + model, |
| 63 | + tools: allTools |
| 64 | + // ... |
| 65 | + }); |
| 66 | + } |
| 67 | +} |
| 68 | +``` |
| 69 | + |
| 70 | +## Instructions |
| 71 | + |
| 72 | +1. Copy `.dev.vars.example` to `.dev.vars` and add your OpenAI API key |
| 73 | +2. Run `npm install` |
| 74 | +3. Run `npm start` |
| 75 | +4. Open the UI in your browser |
| 76 | + |
| 77 | +Try asking the AI to add numbers to the counter! |
| 78 | + |
| 79 | +## More Info |
| 80 | + |
| 81 | +Sevice bindings over RPC are commonly used in Workers to call out to other Cloudflare services. You can find out more [in the docs](https://developers.cloudflare.com/workers/runtime-apis/bindings/). |
| 82 | + |
| 83 | +The Model Context Protocol supports [pluggable transports](https://modelcontextprotocol.io/specification/2025-06-18/basic/transports). The code for this custom RPC transport can be found [here](packages/agents/src/mcp/rpc.ts) |
0 commit comments