-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_com.py
398 lines (310 loc) · 18.2 KB
/
main_com.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#-*- coding: utf-8 -*-
"""
Placement using Neural Combinational Optimization.
Author: Ruben Solozabal, PhD student at the University of the Basque Country (UPV-EHU) - Bilbao
Date: June 2019
"""
import logging
import time
import tensorflow as tf
from environment import *
from service_batch_generator import *
from agent import *
from config import *
from solver import *
from tensorflow.python import debug as tf_debug
from tqdm import tqdm
import csv
import os
from first_fit import *
import copy
from generate_vector import *
from multi_objective import *
from staMutiObj import *
""" Globals """
DEBUG = True
OBJETIVE = 2
def print_trainable_parameters():
""" Calculate the number of weights """
total_parameters = 0
for variable in tf.trainable_variables():
# shape is an array of tf.Dimension
shape = variable.get_shape()
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
print('shape: ', shape, 'variable_parameters: ', variable_parameters)
total_parameters += variable_parameters
print('Total_parameters: ', total_parameters)
#_ = input("input any key to continue")
def calculate_reward(env, networkServices, placement, num_samples, omiga):
""" Evaluate the batch of states into the environmnet """#在一个批次(相当于batch_size个SFC请求)内,抽样N个放置结果,取其中最小的目标函数
lagrangian = np.zeros(config.batch_size)
penalty = np.zeros(config.batch_size)
reward = np.zeros(config.batch_size)
constraint_occupancy = np.zeros(config.batch_size)
constraint_bandwidth = np.zeros(config.batch_size)
constraint_latency = np.zeros(config.batch_size)
objects = np.zeros((config.batch_size, OBJETIVE))
reward_sampling = np.zeros(num_samples)
objects_sampling = np.zeros((num_samples, OBJETIVE))
constraint_occupancy_sampling = np.zeros(num_samples)
constraint_bandwidth_sampling = np.zeros(num_samples)
constraint_latency_sampling = np.zeros(num_samples)
indices = np.zeros(config.batch_size)
# Compute environment
for batch in range(config.batch_size): #一个批次处理, 一批次相当于多个SFC部署完成,但每次只放置一个SFC,放置后后得到一个奖励
for sample in range(num_samples): #抽样,尝试了num_samples次,每次都是一个“干净”的环境
env.clear()
env.step(networkServices.service_length[batch], networkServices.state[batch], placement[sample][batch], omiga)#
reward_sampling[sample] = env.reward
#print(env.objectives)
objects_sampling[sample] = env.objectives
constraint_occupancy_sampling[sample] = env.constraint_occupancy
constraint_bandwidth_sampling[sample] = env.constraint_bandwidth
constraint_latency_sampling[sample] = env.constraint_latency
penalty_sampling = agent.lambda_occupancy * constraint_occupancy_sampling + agent.lambda_bandwidth * constraint_bandwidth_sampling + agent.lambda_latency * constraint_latency_sampling
lagrangian_sampling = reward_sampling + penalty_sampling #奖励与惩罚两部分之和 lagrangian_sampling 是一个向量
index = np.argmin(lagrangian_sampling) #取抽样后的优化目标的最小值对应的下标
lagrangian[batch] = lagrangian_sampling[index]
penalty[batch] = penalty_sampling[index]
reward[batch] = reward_sampling[index]
objects[batch] = objects_sampling[index]
constraint_occupancy[batch] = constraint_occupancy_sampling[index]
constraint_bandwidth[batch] = constraint_bandwidth_sampling[index]
constraint_latency[batch] = constraint_latency_sampling[index]
indices[batch] = index #index最小目标值的下标
return lagrangian, penalty, reward, constraint_occupancy, constraint_bandwidth, constraint_latency, indices, objects
if __name__ == "__main__":
""" Log """
logging.basicConfig(level=logging.INFO) # filename='example.log'
# DEBUG, INFO, WARNING, ERROR, CRITICAL
""" Configuration """
config, _ = get_config()
""" Environment """
env = Environment(config.num_cpus, config.num_vnfd, np.ones(OBJETIVE), config.env_profile)
""" Network service generator """
vocab_size = config.num_vnfd + 1
networkServices = ServiceBatchGenerator(config.batch_size, config.min_length, config.max_length, vocab_size)
"""Generate multi objectives vectors"""
multiObjVec = Mean_vector(100, OBJETIVE)
""" Agent """
agent = Agent(config)
""" Configure Saver to save & restore model variables """
variables_to_save = [v for v in tf.global_variables() if 'Adam' not in v.name]
#saver = tf.train.Saver(var_list=variables_to_save, keep_checkpoint_every_n_hours=1.0)
saver = tf.train.Saver(var_list=variables_to_save)
print("Starting session ...")
with tf.Session() as sess:
# Activate Tensorflow CLI debugger
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# Activate Tensorflow debugger in Tensorboard
#sess = tf_debug.TensorBoardDebugWrapperSession(
# sess=sess,
# grpc_debug_server_addresses=['localhost:6064'],
# send_traceback_and_source_code=True)
# Run initialize op
sess.run(tf.global_variables_initializer())
# Print total number of parameters
print_trainable_parameters()
# Learn model
if config.learn_mode:
"""
Learning
"""
# Restore model 本次实验不需要
if config.load_model:
saver.restore(sess, "{}/tf_placement.ckpt".format(config.load_from))
print("\nModel restored.")
# Summary writer
writer = tf.summary.FileWriter("summary/repo", sess.graph)
if config.save_model:
filePath = "{}/learning_history.csv".format(config.save_to)
if not os.path.exists(os.path.dirname(filePath)):
os.makedirs(os.path.dirname(filePath))
if os.path.exists(filePath) and not config.load_model:
os.remove(filePath)
print("\nStart learning...")
try:
omigas = multiObjVec.get_mean_vectors()
for objectN in range(len(omigas)):
starTime = time.time()
if objectN > 0:
#从已有的模型中选择上一个相邻模型,加载其参数
rObjModel = "_".join(str(j) for j in omigas[objectN-1])
saver.restore(sess, "{}/".format(config.save_to) + rObjModel + "/model.ckpt")
objectiveModel = "_".join(str(i) for i in omigas[objectN])
with open(config.save_to + "duration_com.txt", "a+") as f:
f.write(objectiveModel + ':')
episode = 0
for episode in range(config.num_epoch):
# New batch of states 每次可以生成batch个SFC请求
networkServices.getNewState()
# Mask i为SFC的数量 j为每个SFC上VNF的数量,实际的SFC长度
mask = np.zeros((config.batch_size,config.max_length))
for i in range(config.batch_size):
for j in range(networkServices.service_length[i], config.max_length):
mask[i, j] = 1 #若0表示有效,1表示没有VNF
# RL Learning
feed = {agent.input_: networkServices.state,
agent.input_len_: [item for item in networkServices.service_length],
agent.mask: mask}
# Run placement
placement, decoder_softmax, _, baseline = sess.run([agent.actor.decoder_exploration, agent.actor.decoder_softmax, agent.actor.attention_plot, agent.valueEstimator.value_estimate], feed_dict=feed)
# positions, attention_plot = sess.run([agent.actor.positions, agent.actor.attention_plot], feed_dict=feed)
# Interact with the environment to return reward
lagrangian, penalty, reward, constraint_occupancy, constraint_bandwidth, constraint_latency, indices, objs = calculate_reward(env, networkServices, placement, 1, omigas[objectN])
placement_ = np.zeros((config.batch_size, config.max_length))
for batch in range(config.batch_size):
placement_[batch] = placement[int(indices[batch])][batch] #placement_抽样的最优解?
feed = {agent.placement_holder: placement_,
agent.input_: networkServices.state,
agent.input_len_: [item for item in networkServices.service_length],
agent.mask: mask,
agent.baseline_holder: baseline,
agent.lagrangian_holder: [item for item in lagrangian]}
# Update our value estimator 更新值的估算,基线函数的估算?
feed_dict_ve = {agent.input_: networkServices.state,
agent.valueEstimator.target: lagrangian}
_, loss = sess.run([agent.valueEstimator.train_op, agent.valueEstimator.loss], feed_dict_ve)
# Update actor 更新策略?
summary, _, loss_rl = sess.run([agent.merged, agent.train_step, agent.loss_rl], feed_dict=feed)
# Print learning
if episode == 0 or episode % 100 == 0:
print("------------")
print("Episode: ", episode)
print("Minibatch loss: ", loss_rl)
print("Network service[batch0]: ", networkServices.state[0])
print("Network service[batch1]: ", networkServices.state[1])
print("Len[batch0]", networkServices.service_length[0])
print("Len[batch1]", networkServices.service_length[1])
print("Placement[batch0]: ", placement_[0])
print("Placement[batch1]: ", placement_[1])
# agent.actor.plot_attention(attention_plot[0])
# print("prob:", decoder_softmax[0][0])
# print("prob:", decoder_softmax[0][1])
# print("prob:", decoder_softmax[0][2])
print("Baseline[batch0]: ", baseline[0])
print("Reward[batch0]: ", reward[0])
print("Penalty[batch0]: ", penalty[0])
print("Lagrangian[batch0]: ", lagrangian[0])
print("Baseline[batch1]: ", baseline[1])
print("Reward[batch1]: ", reward[1])
print("Penalty[batch1]: ", penalty[1])
print("Lagrangian[batch1]: ", lagrangian[1])
print("Value Estimator loss: ", np.mean(loss))
print("Mean penalty: ", np.mean(penalty))
print("Count_nonzero: ", np.count_nonzero(penalty))
if episode % 5000 == 0:
# Save in summary
writer.add_summary(summary, episode)
if config.save_model and (episode == 0 or episode % 5000 == 0):
# Save in csv
csvData = ['omiga: {}'.format(omigas[objectN]),
'batch: {}'.format(episode),
' network_service[batch 0]: {}'.format(networkServices.state[0]),
' placement[batch 0]: {}'.format(placement_[0]),
' reward: {}'.format(np.mean(reward)),
' lagrangian: {}'.format(np.mean(lagrangian)),
' baseline: {}'.format(np.mean(baseline)),
' advantage: {}'.format(np.mean(lagrangian) - np.mean(baseline)),
' penalty: {}'.format(np.mean(penalty)),
' minibatch_loss: {}'.format(loss_rl)]
filePath = "{}/learning_history.csv".format(config.save_to)
with open(filePath, 'a') as csvFile:
writer2 = csv.writer(csvFile)
writer2.writerow(csvData)
csvFile.close()
# Save intermediary model variables
#if config.save_model and episode % max(1, int(config.num_epoch / 5)) == 0 and episode != 0:
# save_path = saver.save(sess, "{}/tmp.ckpt".format(config.save_to), global_step=episode)
# print("\n Intermediary Model saved in file: %s" % save_path)
episode += 1
print("\nLearning COMPLETED!")
#保存每个学习模型--保存后再修改文件夹,否则上一次的内容将被覆盖
#save_path = saver.save(sess, "{}/".format(config.save_to)+objectiveModel+"/model.ckpt")
save_path = saver.save(sess, "{}/".format(config.save_to) + "tmp" + "/model.ckpt")
os.rename("{}/".format(config.save_to) + "tmp", "{}/".format(config.save_to)+objectiveModel)
print("\nObjective Model is saved in file: %s" % objectiveModel)
duration = time.time() - starTime
with open(config.save_to + "duration_com.txt", "a+") as f:
f.write(str(duration) + '\n')
except KeyboardInterrupt:
print("\nLearning interrupted by user.")
# Save model
if config.save_model:
save_path = saver.save(sess, "{}/tf_placement.ckpt".format(config.save_to))
print("\nFinal Model saved in file: %s" % save_path)
else:
"""
Inference
"""
# New batch of states
networkServices.getNewState()
# Mask
mask = np.zeros((config.batch_size, config.max_length))
for i in range(config.batch_size):
for j in range(networkServices.service_length[i], config.max_length):
mask[i, j] = 1
omigas = multiObjVec.get_mean_vectors()
placement = []
decoder_softmax = []
lagrangian = []
penalty = []
reward = []
constraint_occupancy = []
constraint_bandwidth = []
constraint_latency = []
objects = []
for objectN in range(len(omigas)):
# 加载模型--->模型的编号为2
objectiveModel = "_".join(str(j) for j in omigas[objectN])
saver.restore(sess, "{}_{}/".format(config.load_from, 2) + objectiveModel + "/model.ckpt")
# saver.restore(sess, "{}_{}/tf_placement.ckpt".format(config.load_from, i+1))
print("{}_{}/".format(config.load_from, i + 1) + objectiveModel + "/model.ckpt", " 's Model restored.")
# print_trainable_parameters()
# Compute placement
feed = {agent.input_: networkServices.state,
agent.input_len_: [item for item in networkServices.service_length],
agent.mask: mask}
_, placement_t, _, _ = \
sess.run([agent.actor.decoder_sampling, agent.actor.decoder_prediction, agent.actor.decoder_softmax_temp,
agent.actor.decoder_softmax], feed_dict=feed)
# Interact with the environment with greedy placement---模拟部署
lagrangian_t, penalty_t, reward_t, constraint_occupancy_t, constraint_bandwidth_t, constraint_latency_t, _, objects_t = \
calculate_reward(env, networkServices, placement_t, 1, omigas[objectN])
# 保存每个目标的结果
lagrangian.append(lagrangian_t)
penalty.append(penalty_t)
reward.append(reward_t)
constraint_bandwidth.append(constraint_bandwidth_t)
constraint_occupancy.append(constraint_occupancy_t)
constraint_latency.append(constraint_latency_t)
objects.append(objects_t)
placement.append(placement_t[0])
print("finish placement : ", objectN, omigas[objectN])
print("start statistics ")
hv = [0] * config.batch_size
prei = [0] * config.batch_size
for batchN in range(config.batch_size):
mobj = MultiObj(objects, batchN)
_, prei_t = mobj.selectPre()
#preference
prei[batchN] = prei_t
# PF
#mobj.showPF()
# HV
#hv[batchN] = mobj.get_hyperVolume([550, 100]) #当vnf = 6 8 10 0805之前参数
hv[batchN] = mobj.get_hyperVolume([600, 100]) #当0805第二次运行Small时,全设置为600
name = ['hv']
hvall = pd.DataFrame(columns=name, data=hv)
hvall.to_csv('PF/hvAll.csv', mode='a', encoding='gbk')
#print("AR_bandwidth:", constraint_bandwidth)
#print("AR_latency:", constraint_latency)
#print("AR_occupancy:", constraint_occupancy)
acceptSFC = getArPreference(config.batch_size, prei, \
constraint_bandwidth, constraint_latency, constraint_occupancy)
print("Accpet radio from the preference:", acceptSFC)
acceptSFC = getArGreed(len(omigas), config.batch_size, \
constraint_bandwidth, constraint_latency, constraint_occupancy)
print("Accpet radio from the greed:", acceptSFC)