-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtlm.py
653 lines (546 loc) · 38.6 KB
/
tlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Optional
from typing_extensions import Literal
import httpx
from ..types import tlm_score_params, tlm_prompt_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import maybe_transform, async_maybe_transform
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import (
to_raw_response_wrapper,
to_streamed_response_wrapper,
async_to_raw_response_wrapper,
async_to_streamed_response_wrapper,
)
from .._base_client import make_request_options
from ..types.tlm_score_response import TlmScoreResponse
from ..types.tlm_prompt_response import TlmPromptResponse
__all__ = ["TlmResource", "AsyncTlmResource"]
class TlmResource(SyncAPIResource):
@cached_property
def with_raw_response(self) -> TlmResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/cleanlab/codex-python#accessing-raw-response-data-eg-headers
"""
return TlmResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TlmResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/cleanlab/codex-python#with_streaming_response
"""
return TlmResourceWithStreamingResponse(self)
def prompt(
self,
*,
prompt: str,
constrain_outputs: Optional[List[str]] | NotGiven = NOT_GIVEN,
options: Optional[tlm_prompt_params.Options] | NotGiven = NOT_GIVEN,
quality_preset: Literal["best", "high", "medium", "low", "base"] | NotGiven = NOT_GIVEN,
task: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TlmPromptResponse:
"""
Prompts the TLM API.
Args:
options: Typed dict of advanced configuration options for the Trustworthy Language Model.
Many of these configurations are determined by the quality preset selected
(learn about quality presets in the TLM [initialization method](./#class-tlm)).
Specifying TLMOptions values directly overrides any default values set from the
quality preset.
For all options described below, higher settings will lead to longer runtimes
and may consume more tokens internally. You may not be able to run long prompts
(or prompts with long responses) in your account, unless your token/rate limits
are increased. If you hit token limit issues, try lower/less expensive
TLMOptions to be able to run longer prompts/responses, or contact Cleanlab to
increase your limits.
The default values corresponding to each quality preset are:
- **best:** `num_candidate_responses` = 6, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **high:** `num_candidate_responses` = 4, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **medium:** `num_candidate_responses` = 1, `num_consistency_samples` = 8,
`use_self_reflection` = True.
- **low:** `num_candidate_responses` = 1, `num_consistency_samples` = 4,
`use_self_reflection` = True.
- **base:** `num_candidate_responses` = 1, `num_consistency_samples` = 0,
`use_self_reflection` = False. When using `get_trustworthiness_score()` on
"base" preset, a cheaper self-reflection will be used to compute the
trustworthiness score.
By default, the TLM uses the "medium" quality preset. The default base LLM
`model` used is "gpt-4o-mini", and `max_tokens` is 512 for all quality presets.
You can set custom values for these arguments regardless of the quality preset
specified.
Args: model ({"gpt-4o-mini", "gpt-4o", "o3-mini", "o1", "o1-mini", "o1-preview",
"gpt-3.5-turbo-16k", "gpt-4", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-sonnet", "claude-3.5-haiku",
"claude-3-haiku", "nova-micro", "nova-lite", "nova-pro"}, default =
"gpt-4o-mini"): Underlying base LLM to use (better models yield better results,
faster models yield faster/cheaper results). - Models still in beta: "o1",
"o3-mini", "o1-mini", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-haiku", "nova-micro", "nova-lite",
"nova-pro". - Recommended models for accuracy: "gpt-4o", "o3-mini", "o1",
"claude-3.7-sonnet". - Recommended models for low latency/costs: "nova-micro",
"gpt-4o-mini".
max_tokens (int, default = 512): the maximum number of tokens that can be generated in the TLM response (and in internal trustworthiness scoring).
Higher values here may produce better (more reliable) TLM responses and trustworthiness scores, but at higher costs/runtimes.
If you experience token/rate limit errors while using TLM, try lowering this number.
For OpenAI models, this parameter must be between 64 and 4096. For Claude models, this parameter must be between 64 and 512.
num_candidate_responses (int, default = 1): how many alternative candidate responses are internally generated by TLM.
TLM scores the trustworthiness of each candidate response, and then returns the most trustworthy one.
Higher values here can produce better (more accurate) responses from the TLM, but at higher costs/runtimes (and internally consumes more tokens).
This parameter must be between 1 and 20.
When it is 1, TLM simply returns a standard LLM response and does not attempt to auto-improve it.
num_consistency_samples (int, default = 8): the amount of internal sampling to evaluate LLM response consistency.
Must be between 0 and 20. Higher values produce more reliable TLM trustworthiness scores, but at higher costs/runtimes.
This consistency helps quantify the epistemic uncertainty associated with
strange prompts or prompts that are too vague/open-ended to receive a clearly defined 'good' response.
TLM internally measures consistency via the degree of contradiction between sampled responses that the model considers equally plausible.
use_self_reflection (bool, default = `True`): whether the LLM is asked to self-reflect upon the response it
generated and self-evaluate this response.
Setting this False disables self-reflection and may worsen trustworthiness scores, but will reduce costs/runtimes.
Self-reflection helps quantify aleatoric uncertainty associated with challenging prompts
and catches answers that are obviously incorrect/bad.
similarity_measure ({"semantic", "string", "embedding", "embedding_large"}, default = "semantic"): how the trustworthiness scoring algorithm measures
similarity between sampled responses considered by the model in the consistency assessment.
Supported similarity measures include "semantic" (based on natural language inference), "string" (based on character/word overlap),
"embedding" (based on embedding similarity), and "embedding_large" (based on embedding similarity with a larger embedding model).
Set this to "string" to improve latency/costs.
reasoning_effort ({"none", "low", "medium", "high"}, default = "high"): how much the LLM can reason (number of thinking tokens)
when considering alternative possible responses and double-checking responses.
Higher efforts here may produce better TLM trustworthiness scores and LLM responses. Reduce this value to improve latency/costs.
log (list[str], default = []): optionally specify additional logs or metadata that TLM should return.
For instance, include "explanation" here to get explanations of why a response is scored with low trustworthiness.
custom_eval_criteria (list[dict[str, Any]], default = []): optionally specify custom evalution criteria.
The expected input format is a list of dictionaries, where each dictionary has the following keys:
- name: Name of the evaluation criteria.
- criteria: Instructions specifying the evaluation criteria.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/api/tlm/prompt",
body=maybe_transform(
{
"prompt": prompt,
"constrain_outputs": constrain_outputs,
"options": options,
"quality_preset": quality_preset,
"task": task,
},
tlm_prompt_params.TlmPromptParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TlmPromptResponse,
)
def score(
self,
*,
prompt: str,
response: str,
constrain_outputs: Optional[List[str]] | NotGiven = NOT_GIVEN,
options: Optional[tlm_score_params.Options] | NotGiven = NOT_GIVEN,
quality_preset: Literal["best", "high", "medium", "low", "base"] | NotGiven = NOT_GIVEN,
task: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TlmScoreResponse:
"""
Scores the TLM API.
TODO:
- Track query count in DB
- Enforce hard cap on queries for users w/o credit card on file
Args:
options: Typed dict of advanced configuration options for the Trustworthy Language Model.
Many of these configurations are determined by the quality preset selected
(learn about quality presets in the TLM [initialization method](./#class-tlm)).
Specifying TLMOptions values directly overrides any default values set from the
quality preset.
For all options described below, higher settings will lead to longer runtimes
and may consume more tokens internally. You may not be able to run long prompts
(or prompts with long responses) in your account, unless your token/rate limits
are increased. If you hit token limit issues, try lower/less expensive
TLMOptions to be able to run longer prompts/responses, or contact Cleanlab to
increase your limits.
The default values corresponding to each quality preset are:
- **best:** `num_candidate_responses` = 6, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **high:** `num_candidate_responses` = 4, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **medium:** `num_candidate_responses` = 1, `num_consistency_samples` = 8,
`use_self_reflection` = True.
- **low:** `num_candidate_responses` = 1, `num_consistency_samples` = 4,
`use_self_reflection` = True.
- **base:** `num_candidate_responses` = 1, `num_consistency_samples` = 0,
`use_self_reflection` = False. When using `get_trustworthiness_score()` on
"base" preset, a cheaper self-reflection will be used to compute the
trustworthiness score.
By default, the TLM uses the "medium" quality preset. The default base LLM
`model` used is "gpt-4o-mini", and `max_tokens` is 512 for all quality presets.
You can set custom values for these arguments regardless of the quality preset
specified.
Args: model ({"gpt-4o-mini", "gpt-4o", "o3-mini", "o1", "o1-mini", "o1-preview",
"gpt-3.5-turbo-16k", "gpt-4", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-sonnet", "claude-3.5-haiku",
"claude-3-haiku", "nova-micro", "nova-lite", "nova-pro"}, default =
"gpt-4o-mini"): Underlying base LLM to use (better models yield better results,
faster models yield faster/cheaper results). - Models still in beta: "o1",
"o3-mini", "o1-mini", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-haiku", "nova-micro", "nova-lite",
"nova-pro". - Recommended models for accuracy: "gpt-4o", "o3-mini", "o1",
"claude-3.7-sonnet". - Recommended models for low latency/costs: "nova-micro",
"gpt-4o-mini".
max_tokens (int, default = 512): the maximum number of tokens that can be generated in the TLM response (and in internal trustworthiness scoring).
Higher values here may produce better (more reliable) TLM responses and trustworthiness scores, but at higher costs/runtimes.
If you experience token/rate limit errors while using TLM, try lowering this number.
For OpenAI models, this parameter must be between 64 and 4096. For Claude models, this parameter must be between 64 and 512.
num_candidate_responses (int, default = 1): how many alternative candidate responses are internally generated by TLM.
TLM scores the trustworthiness of each candidate response, and then returns the most trustworthy one.
Higher values here can produce better (more accurate) responses from the TLM, but at higher costs/runtimes (and internally consumes more tokens).
This parameter must be between 1 and 20.
When it is 1, TLM simply returns a standard LLM response and does not attempt to auto-improve it.
num_consistency_samples (int, default = 8): the amount of internal sampling to evaluate LLM response consistency.
Must be between 0 and 20. Higher values produce more reliable TLM trustworthiness scores, but at higher costs/runtimes.
This consistency helps quantify the epistemic uncertainty associated with
strange prompts or prompts that are too vague/open-ended to receive a clearly defined 'good' response.
TLM internally measures consistency via the degree of contradiction between sampled responses that the model considers equally plausible.
use_self_reflection (bool, default = `True`): whether the LLM is asked to self-reflect upon the response it
generated and self-evaluate this response.
Setting this False disables self-reflection and may worsen trustworthiness scores, but will reduce costs/runtimes.
Self-reflection helps quantify aleatoric uncertainty associated with challenging prompts
and catches answers that are obviously incorrect/bad.
similarity_measure ({"semantic", "string", "embedding", "embedding_large"}, default = "semantic"): how the trustworthiness scoring algorithm measures
similarity between sampled responses considered by the model in the consistency assessment.
Supported similarity measures include "semantic" (based on natural language inference), "string" (based on character/word overlap),
"embedding" (based on embedding similarity), and "embedding_large" (based on embedding similarity with a larger embedding model).
Set this to "string" to improve latency/costs.
reasoning_effort ({"none", "low", "medium", "high"}, default = "high"): how much the LLM can reason (number of thinking tokens)
when considering alternative possible responses and double-checking responses.
Higher efforts here may produce better TLM trustworthiness scores and LLM responses. Reduce this value to improve latency/costs.
log (list[str], default = []): optionally specify additional logs or metadata that TLM should return.
For instance, include "explanation" here to get explanations of why a response is scored with low trustworthiness.
custom_eval_criteria (list[dict[str, Any]], default = []): optionally specify custom evalution criteria.
The expected input format is a list of dictionaries, where each dictionary has the following keys:
- name: Name of the evaluation criteria.
- criteria: Instructions specifying the evaluation criteria.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/api/tlm/score",
body=maybe_transform(
{
"prompt": prompt,
"response": response,
"constrain_outputs": constrain_outputs,
"options": options,
"quality_preset": quality_preset,
"task": task,
},
tlm_score_params.TlmScoreParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TlmScoreResponse,
)
class AsyncTlmResource(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncTlmResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/cleanlab/codex-python#accessing-raw-response-data-eg-headers
"""
return AsyncTlmResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTlmResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/cleanlab/codex-python#with_streaming_response
"""
return AsyncTlmResourceWithStreamingResponse(self)
async def prompt(
self,
*,
prompt: str,
constrain_outputs: Optional[List[str]] | NotGiven = NOT_GIVEN,
options: Optional[tlm_prompt_params.Options] | NotGiven = NOT_GIVEN,
quality_preset: Literal["best", "high", "medium", "low", "base"] | NotGiven = NOT_GIVEN,
task: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TlmPromptResponse:
"""
Prompts the TLM API.
Args:
options: Typed dict of advanced configuration options for the Trustworthy Language Model.
Many of these configurations are determined by the quality preset selected
(learn about quality presets in the TLM [initialization method](./#class-tlm)).
Specifying TLMOptions values directly overrides any default values set from the
quality preset.
For all options described below, higher settings will lead to longer runtimes
and may consume more tokens internally. You may not be able to run long prompts
(or prompts with long responses) in your account, unless your token/rate limits
are increased. If you hit token limit issues, try lower/less expensive
TLMOptions to be able to run longer prompts/responses, or contact Cleanlab to
increase your limits.
The default values corresponding to each quality preset are:
- **best:** `num_candidate_responses` = 6, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **high:** `num_candidate_responses` = 4, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **medium:** `num_candidate_responses` = 1, `num_consistency_samples` = 8,
`use_self_reflection` = True.
- **low:** `num_candidate_responses` = 1, `num_consistency_samples` = 4,
`use_self_reflection` = True.
- **base:** `num_candidate_responses` = 1, `num_consistency_samples` = 0,
`use_self_reflection` = False. When using `get_trustworthiness_score()` on
"base" preset, a cheaper self-reflection will be used to compute the
trustworthiness score.
By default, the TLM uses the "medium" quality preset. The default base LLM
`model` used is "gpt-4o-mini", and `max_tokens` is 512 for all quality presets.
You can set custom values for these arguments regardless of the quality preset
specified.
Args: model ({"gpt-4o-mini", "gpt-4o", "o3-mini", "o1", "o1-mini", "o1-preview",
"gpt-3.5-turbo-16k", "gpt-4", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-sonnet", "claude-3.5-haiku",
"claude-3-haiku", "nova-micro", "nova-lite", "nova-pro"}, default =
"gpt-4o-mini"): Underlying base LLM to use (better models yield better results,
faster models yield faster/cheaper results). - Models still in beta: "o1",
"o3-mini", "o1-mini", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-haiku", "nova-micro", "nova-lite",
"nova-pro". - Recommended models for accuracy: "gpt-4o", "o3-mini", "o1",
"claude-3.7-sonnet". - Recommended models for low latency/costs: "nova-micro",
"gpt-4o-mini".
max_tokens (int, default = 512): the maximum number of tokens that can be generated in the TLM response (and in internal trustworthiness scoring).
Higher values here may produce better (more reliable) TLM responses and trustworthiness scores, but at higher costs/runtimes.
If you experience token/rate limit errors while using TLM, try lowering this number.
For OpenAI models, this parameter must be between 64 and 4096. For Claude models, this parameter must be between 64 and 512.
num_candidate_responses (int, default = 1): how many alternative candidate responses are internally generated by TLM.
TLM scores the trustworthiness of each candidate response, and then returns the most trustworthy one.
Higher values here can produce better (more accurate) responses from the TLM, but at higher costs/runtimes (and internally consumes more tokens).
This parameter must be between 1 and 20.
When it is 1, TLM simply returns a standard LLM response and does not attempt to auto-improve it.
num_consistency_samples (int, default = 8): the amount of internal sampling to evaluate LLM response consistency.
Must be between 0 and 20. Higher values produce more reliable TLM trustworthiness scores, but at higher costs/runtimes.
This consistency helps quantify the epistemic uncertainty associated with
strange prompts or prompts that are too vague/open-ended to receive a clearly defined 'good' response.
TLM internally measures consistency via the degree of contradiction between sampled responses that the model considers equally plausible.
use_self_reflection (bool, default = `True`): whether the LLM is asked to self-reflect upon the response it
generated and self-evaluate this response.
Setting this False disables self-reflection and may worsen trustworthiness scores, but will reduce costs/runtimes.
Self-reflection helps quantify aleatoric uncertainty associated with challenging prompts
and catches answers that are obviously incorrect/bad.
similarity_measure ({"semantic", "string", "embedding", "embedding_large"}, default = "semantic"): how the trustworthiness scoring algorithm measures
similarity between sampled responses considered by the model in the consistency assessment.
Supported similarity measures include "semantic" (based on natural language inference), "string" (based on character/word overlap),
"embedding" (based on embedding similarity), and "embedding_large" (based on embedding similarity with a larger embedding model).
Set this to "string" to improve latency/costs.
reasoning_effort ({"none", "low", "medium", "high"}, default = "high"): how much the LLM can reason (number of thinking tokens)
when considering alternative possible responses and double-checking responses.
Higher efforts here may produce better TLM trustworthiness scores and LLM responses. Reduce this value to improve latency/costs.
log (list[str], default = []): optionally specify additional logs or metadata that TLM should return.
For instance, include "explanation" here to get explanations of why a response is scored with low trustworthiness.
custom_eval_criteria (list[dict[str, Any]], default = []): optionally specify custom evalution criteria.
The expected input format is a list of dictionaries, where each dictionary has the following keys:
- name: Name of the evaluation criteria.
- criteria: Instructions specifying the evaluation criteria.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/api/tlm/prompt",
body=await async_maybe_transform(
{
"prompt": prompt,
"constrain_outputs": constrain_outputs,
"options": options,
"quality_preset": quality_preset,
"task": task,
},
tlm_prompt_params.TlmPromptParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TlmPromptResponse,
)
async def score(
self,
*,
prompt: str,
response: str,
constrain_outputs: Optional[List[str]] | NotGiven = NOT_GIVEN,
options: Optional[tlm_score_params.Options] | NotGiven = NOT_GIVEN,
quality_preset: Literal["best", "high", "medium", "low", "base"] | NotGiven = NOT_GIVEN,
task: Optional[str] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> TlmScoreResponse:
"""
Scores the TLM API.
TODO:
- Track query count in DB
- Enforce hard cap on queries for users w/o credit card on file
Args:
options: Typed dict of advanced configuration options for the Trustworthy Language Model.
Many of these configurations are determined by the quality preset selected
(learn about quality presets in the TLM [initialization method](./#class-tlm)).
Specifying TLMOptions values directly overrides any default values set from the
quality preset.
For all options described below, higher settings will lead to longer runtimes
and may consume more tokens internally. You may not be able to run long prompts
(or prompts with long responses) in your account, unless your token/rate limits
are increased. If you hit token limit issues, try lower/less expensive
TLMOptions to be able to run longer prompts/responses, or contact Cleanlab to
increase your limits.
The default values corresponding to each quality preset are:
- **best:** `num_candidate_responses` = 6, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **high:** `num_candidate_responses` = 4, `num_consistency_samples` = 8,
`use_self_reflection` = True. This preset improves LLM responses.
- **medium:** `num_candidate_responses` = 1, `num_consistency_samples` = 8,
`use_self_reflection` = True.
- **low:** `num_candidate_responses` = 1, `num_consistency_samples` = 4,
`use_self_reflection` = True.
- **base:** `num_candidate_responses` = 1, `num_consistency_samples` = 0,
`use_self_reflection` = False. When using `get_trustworthiness_score()` on
"base" preset, a cheaper self-reflection will be used to compute the
trustworthiness score.
By default, the TLM uses the "medium" quality preset. The default base LLM
`model` used is "gpt-4o-mini", and `max_tokens` is 512 for all quality presets.
You can set custom values for these arguments regardless of the quality preset
specified.
Args: model ({"gpt-4o-mini", "gpt-4o", "o3-mini", "o1", "o1-mini", "o1-preview",
"gpt-3.5-turbo-16k", "gpt-4", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-sonnet", "claude-3.5-haiku",
"claude-3-haiku", "nova-micro", "nova-lite", "nova-pro"}, default =
"gpt-4o-mini"): Underlying base LLM to use (better models yield better results,
faster models yield faster/cheaper results). - Models still in beta: "o1",
"o3-mini", "o1-mini", "gpt-4.5-preview", "claude-3.7-sonnet",
"claude-3.5-sonnet-v2", "claude-3.5-haiku", "nova-micro", "nova-lite",
"nova-pro". - Recommended models for accuracy: "gpt-4o", "o3-mini", "o1",
"claude-3.7-sonnet". - Recommended models for low latency/costs: "nova-micro",
"gpt-4o-mini".
max_tokens (int, default = 512): the maximum number of tokens that can be generated in the TLM response (and in internal trustworthiness scoring).
Higher values here may produce better (more reliable) TLM responses and trustworthiness scores, but at higher costs/runtimes.
If you experience token/rate limit errors while using TLM, try lowering this number.
For OpenAI models, this parameter must be between 64 and 4096. For Claude models, this parameter must be between 64 and 512.
num_candidate_responses (int, default = 1): how many alternative candidate responses are internally generated by TLM.
TLM scores the trustworthiness of each candidate response, and then returns the most trustworthy one.
Higher values here can produce better (more accurate) responses from the TLM, but at higher costs/runtimes (and internally consumes more tokens).
This parameter must be between 1 and 20.
When it is 1, TLM simply returns a standard LLM response and does not attempt to auto-improve it.
num_consistency_samples (int, default = 8): the amount of internal sampling to evaluate LLM response consistency.
Must be between 0 and 20. Higher values produce more reliable TLM trustworthiness scores, but at higher costs/runtimes.
This consistency helps quantify the epistemic uncertainty associated with
strange prompts or prompts that are too vague/open-ended to receive a clearly defined 'good' response.
TLM internally measures consistency via the degree of contradiction between sampled responses that the model considers equally plausible.
use_self_reflection (bool, default = `True`): whether the LLM is asked to self-reflect upon the response it
generated and self-evaluate this response.
Setting this False disables self-reflection and may worsen trustworthiness scores, but will reduce costs/runtimes.
Self-reflection helps quantify aleatoric uncertainty associated with challenging prompts
and catches answers that are obviously incorrect/bad.
similarity_measure ({"semantic", "string", "embedding", "embedding_large"}, default = "semantic"): how the trustworthiness scoring algorithm measures
similarity between sampled responses considered by the model in the consistency assessment.
Supported similarity measures include "semantic" (based on natural language inference), "string" (based on character/word overlap),
"embedding" (based on embedding similarity), and "embedding_large" (based on embedding similarity with a larger embedding model).
Set this to "string" to improve latency/costs.
reasoning_effort ({"none", "low", "medium", "high"}, default = "high"): how much the LLM can reason (number of thinking tokens)
when considering alternative possible responses and double-checking responses.
Higher efforts here may produce better TLM trustworthiness scores and LLM responses. Reduce this value to improve latency/costs.
log (list[str], default = []): optionally specify additional logs or metadata that TLM should return.
For instance, include "explanation" here to get explanations of why a response is scored with low trustworthiness.
custom_eval_criteria (list[dict[str, Any]], default = []): optionally specify custom evalution criteria.
The expected input format is a list of dictionaries, where each dictionary has the following keys:
- name: Name of the evaluation criteria.
- criteria: Instructions specifying the evaluation criteria.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/api/tlm/score",
body=await async_maybe_transform(
{
"prompt": prompt,
"response": response,
"constrain_outputs": constrain_outputs,
"options": options,
"quality_preset": quality_preset,
"task": task,
},
tlm_score_params.TlmScoreParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=TlmScoreResponse,
)
class TlmResourceWithRawResponse:
def __init__(self, tlm: TlmResource) -> None:
self._tlm = tlm
self.prompt = to_raw_response_wrapper(
tlm.prompt,
)
self.score = to_raw_response_wrapper(
tlm.score,
)
class AsyncTlmResourceWithRawResponse:
def __init__(self, tlm: AsyncTlmResource) -> None:
self._tlm = tlm
self.prompt = async_to_raw_response_wrapper(
tlm.prompt,
)
self.score = async_to_raw_response_wrapper(
tlm.score,
)
class TlmResourceWithStreamingResponse:
def __init__(self, tlm: TlmResource) -> None:
self._tlm = tlm
self.prompt = to_streamed_response_wrapper(
tlm.prompt,
)
self.score = to_streamed_response_wrapper(
tlm.score,
)
class AsyncTlmResourceWithStreamingResponse:
def __init__(self, tlm: AsyncTlmResource) -> None:
self._tlm = tlm
self.prompt = async_to_streamed_response_wrapper(
tlm.prompt,
)
self.score = async_to_streamed_response_wrapper(
tlm.score,
)