forked from PythonOT/POT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackend.py
3234 lines (2435 loc) · 97.4 KB
/
backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Multi-lib backend for POT
The goal is to write backend-agnostic code. Whether you're using Numpy, PyTorch,
Jax, Cupy, or Tensorflow, POT code should work nonetheless.
To achieve that, POT provides backend classes which implements functions in their respective backend
imitating Numpy API. As a convention, we use nx instead of np to refer to the backend.
Examples
--------
>>> from ot.utils import list_to_array
>>> from ot.backend import get_backend
>>> def f(a, b): # the function does not know which backend to use
... a, b = list_to_array(a, b) # if a list in given, make it an array
... nx = get_backend(a, b) # infer the backend from the arguments
... c = nx.dot(a, b) # now use the backend to do any calculation
... return c
.. warning::
Tensorflow only works with the Numpy API. To activate it, please run the following:
.. code-block::
from tensorflow.python.ops.numpy_ops import np_config
np_config.enable_numpy_behavior()
Performance
-----------
- CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
- GPU: Tesla V100-SXM2-32GB
- Date of the benchmark: December 8th, 2021
- Commit of benchmark: PR #316, https://github.com/PythonOT/POT/pull/316
.. raw:: html
<style>
#perftable {
width: 100%;
margin-bottom: 1em;
}
#perftable table{
border-collapse: collapse;
table-layout: fixed;
width: 100%;
}
#perftable th, #perftable td {
border: 1px solid #ddd;
padding: 8px;
font-size: smaller;
}
</style>
<div id="perftable">
<table>
<tr><th align="center" colspan="8">Sinkhorn Knopp - Averaged on 100 runs</th></tr>
<tr><th align="center">Bitsize</th><th align="center" colspan="7">32 bits</th></tr>
<tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
<tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
<tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0022</td><td align="center">0.0151</td><td align="center">0.0095</td><td align="center">0.0193</td><td align="center">0.0051</td><td align="center">0.0293</td></tr>
<tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0097</td><td align="center">0.0057</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0173</td></tr>
<tr><td align="center">500</td><td align="center">0.0009</td><td align="center">0.0016</td><td align="center">0.0110</td><td align="center">0.0058</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0166</td></tr>
<tr><td align="center">1000</td><td align="center">0.0021</td><td align="center">0.0021</td><td align="center">0.0145</td><td align="center">0.0056</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
<tr><td align="center">2000</td><td align="center">0.0069</td><td align="center">0.0043</td><td align="center">0.0278</td><td align="center">0.0059</td><td align="center">0.0118</td><td align="center">0.0030</td><td align="center">0.0165</td></tr>
<tr><td align="center">5000</td><td align="center">0.0707</td><td align="center">0.0314</td><td align="center">0.1395</td><td align="center">0.0074</td><td align="center">0.0125</td><td align="center">0.0035</td><td align="center">0.0198</td></tr>
<tr><td colspan="8"> </td></tr>
<tr><th align="center">Bitsize</th><th align="center" colspan="7">64 bits</th></tr>
<tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
<tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
<tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0020</td><td align="center">0.0154</td><td align="center">0.0093</td><td align="center">0.0191</td><td align="center">0.0051</td><td align="center">0.0328</td></tr>
<tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0094</td><td align="center">0.0056</td><td align="center">0.0114</td><td align="center">0.0029</td><td align="center">0.0169</td></tr>
<tr><td align="center">500</td><td align="center">0.0013</td><td align="center">0.0017</td><td align="center">0.0120</td><td align="center">0.0059</td><td align="center">0.0116</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
<tr><td align="center">1000</td><td align="center">0.0034</td><td align="center">0.0027</td><td align="center">0.0177</td><td align="center">0.0058</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0167</td></tr>
<tr><td align="center">2000</td><td align="center">0.0146</td><td align="center">0.0075</td><td align="center">0.0436</td><td align="center">0.0059</td><td align="center">0.0120</td><td align="center">0.0029</td><td align="center">0.0165</td></tr>
<tr><td align="center">5000</td><td align="center">0.1467</td><td align="center">0.0568</td><td align="center">0.2468</td><td align="center">0.0077</td><td align="center">0.0146</td><td align="center">0.0045</td><td align="center">0.0204</td></tr>
</table>
</div>
"""
# Author: Remi Flamary <[email protected]>
# Nicolas Courty <[email protected]>
#
# License: MIT License
import os
import time
import warnings
import numpy as np
import scipy
import scipy.linalg
import scipy.special as special
from scipy.sparse import coo_matrix, csr_matrix, issparse
DISABLE_TORCH_KEY = "POT_BACKEND_DISABLE_PYTORCH"
DISABLE_JAX_KEY = "POT_BACKEND_DISABLE_JAX"
DISABLE_CUPY_KEY = "POT_BACKEND_DISABLE_CUPY"
DISABLE_TF_KEY = "POT_BACKEND_DISABLE_TENSORFLOW"
if not os.environ.get(DISABLE_TORCH_KEY, False):
try:
import torch
torch_type = torch.Tensor
except ImportError:
torch = False
torch_type = float
else:
torch = False
torch_type = float
if not os.environ.get(DISABLE_JAX_KEY, False):
try:
import jax
import jax.numpy as jnp
import jax.scipy.special as jspecial
from jax.lib import xla_bridge
jax_type = jax.numpy.ndarray
jax_new_version = float(".".join(jax.__version__.split(".")[1:])) > 4.24
except ImportError:
jax = False
jax_type = float
else:
jax = False
jax_type = float
if not os.environ.get(DISABLE_CUPY_KEY, False):
try:
import cupy as cp
import cupyx
cp_type = cp.ndarray
except ImportError:
cp = False
cp_type = float
else:
cp = False
cp_type = float
if not os.environ.get(DISABLE_TF_KEY, False):
try:
import tensorflow as tf
import tensorflow.experimental.numpy as tnp
tf_type = tf.Tensor
except ImportError:
tf = False
tf_type = float
else:
tf = False
tf_type = float
str_type_error = (
"All array should be from the same type/backend. Current types are : {}"
)
# Mapping between argument types and the existing backend
_BACKEND_IMPLEMENTATIONS = []
_BACKENDS = {}
def _register_backend_implementation(backend_impl):
_BACKEND_IMPLEMENTATIONS.append(backend_impl)
def _get_backend_instance(backend_impl):
if backend_impl.__name__ not in _BACKENDS:
_BACKENDS[backend_impl.__name__] = backend_impl()
return _BACKENDS[backend_impl.__name__]
def _check_args_backend(backend_impl, args):
is_instance = set(isinstance(arg, backend_impl.__type__) for arg in args)
# check that all arguments matched or not the type
if len(is_instance) == 1:
return is_instance.pop()
# Otherwise return an error
raise ValueError(str_type_error.format([type(arg) for arg in args]))
def get_backend_list():
"""Returns instances of all available backends.
Note that the function forces all detected implementations
to be instantiated even if specific backend was not use before.
Be careful as instantiation of the backend might lead to side effects,
like GPU memory pre-allocation. See the documentation for more details.
If you only need to know which implementations are available,
use `:py:func:`ot.backend.get_available_backend_implementations`,
which does not force instance of the backend object to be created.
"""
return [
_get_backend_instance(backend_impl)
for backend_impl in get_available_backend_implementations()
]
def get_available_backend_implementations():
"""Returns the list of available backend implementations."""
return _BACKEND_IMPLEMENTATIONS
def get_backend(*args):
"""Returns the proper backend for a list of input arrays
Accepts None entries in the arguments, and ignores them
Also raises TypeError if all arrays are not from the same backend
"""
args = [arg for arg in args if arg is not None] # exclude None entries
# check that some arrays given
if not len(args) > 0:
raise ValueError(" The function takes at least one (non-None) parameter")
for backend_impl in _BACKEND_IMPLEMENTATIONS:
if _check_args_backend(backend_impl, args):
return _get_backend_instance(backend_impl)
raise ValueError("Unknown type of non implemented backend.")
def to_numpy(*args):
"""Returns numpy arrays from any compatible backend"""
if len(args) == 1:
return get_backend(args[0]).to_numpy(args[0])
else:
return [get_backend(a).to_numpy(a) for a in args]
class Backend:
"""
Backend abstract class.
Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend`,
:py:class:`CupyBackend`, :py:class:`TensorflowBackend`
- The `__name__` class attribute refers to the name of the backend.
- The `__type__` class attribute refers to the data structure used by the backend.
"""
__name__ = None
__type__ = None
__type_list__ = None
rng_ = None
def __str__(self):
return self.__name__
# convert batch of tensors to numpy
def to_numpy(self, *arrays):
"""Returns the numpy version of tensors"""
if len(arrays) == 1:
return self._to_numpy(arrays[0])
else:
return [self._to_numpy(array) for array in arrays]
# convert a tensor to numpy
def _to_numpy(self, a):
"""Returns the numpy version of a tensor"""
raise NotImplementedError()
# convert batch of arrays from numpy
def from_numpy(self, *arrays, type_as=None):
"""Creates tensors cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)"""
if len(arrays) == 1:
return self._from_numpy(arrays[0], type_as=type_as)
else:
return [self._from_numpy(array, type_as=type_as) for array in arrays]
# convert an array from numpy
def _from_numpy(self, a, type_as=None):
"""Creates a tensor cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)"""
raise NotImplementedError()
def set_gradients(self, val, inputs, grads):
"""Define the gradients for the value val wrt the inputs"""
raise NotImplementedError()
def detach(self, *arrays):
"""Detach the tensors from the computation graph
See: https://pytorch.org/docs/stable/generated/torch.Tensor.detach.html"""
if len(arrays) == 1:
return self._detach(arrays[0])
else:
return [self._detach(array) for array in arrays]
def _detach(self, a):
"""Detach the tensor from the computation graph"""
raise NotImplementedError()
def zeros(self, shape, type_as=None):
r"""
Creates a tensor full of zeros.
This function follows the api from :any:`numpy.zeros`
See: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
"""
raise NotImplementedError()
def ones(self, shape, type_as=None):
r"""
Creates a tensor full of ones.
This function follows the api from :any:`numpy.ones`
See: https://numpy.org/doc/stable/reference/generated/numpy.ones.html
"""
raise NotImplementedError()
def arange(self, stop, start=0, step=1, type_as=None):
r"""
Returns evenly spaced values within a given interval.
This function follows the api from :any:`numpy.arange`
See: https://numpy.org/doc/stable/reference/generated/numpy.arange.html
"""
raise NotImplementedError()
def full(self, shape, fill_value, type_as=None):
r"""
Creates a tensor with given shape, filled with given value.
This function follows the api from :any:`numpy.full`
See: https://numpy.org/doc/stable/reference/generated/numpy.full.html
"""
raise NotImplementedError()
def eye(self, N, M=None, type_as=None):
r"""
Creates the identity matrix of given size.
This function follows the api from :any:`numpy.eye`
See: https://numpy.org/doc/stable/reference/generated/numpy.eye.html
"""
raise NotImplementedError()
def sum(self, a, axis=None, keepdims=False):
r"""
Sums tensor elements over given dimensions.
This function follows the api from :any:`numpy.sum`
See: https://numpy.org/doc/stable/reference/generated/numpy.sum.html
"""
raise NotImplementedError()
def cumsum(self, a, axis=None):
r"""
Returns the cumulative sum of tensor elements over given dimensions.
This function follows the api from :any:`numpy.cumsum`
See: https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html
"""
raise NotImplementedError()
def max(self, a, axis=None, keepdims=False):
r"""
Returns the maximum of an array or maximum along given dimensions.
This function follows the api from :any:`numpy.amax`
See: https://numpy.org/doc/stable/reference/generated/numpy.amax.html
"""
raise NotImplementedError()
def min(self, a, axis=None, keepdims=False):
r"""
Returns the maximum of an array or maximum along given dimensions.
This function follows the api from :any:`numpy.amin`
See: https://numpy.org/doc/stable/reference/generated/numpy.amin.html
"""
raise NotImplementedError()
def maximum(self, a, b):
r"""
Returns element-wise maximum of array elements.
This function follows the api from :any:`numpy.maximum`
See: https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
"""
raise NotImplementedError()
def minimum(self, a, b):
r"""
Returns element-wise minimum of array elements.
This function follows the api from :any:`numpy.minimum`
See: https://numpy.org/doc/stable/reference/generated/numpy.minimum.html
"""
raise NotImplementedError()
def sign(self, a):
r"""Returns an element-wise indication of the sign of a number.
This function follows the api from :any:`numpy.sign`
See: https://numpy.org/doc/stable/reference/generated/numpy.sign.html
"""
raise NotImplementedError()
def dot(self, a, b):
r"""
Returns the dot product of two tensors.
This function follows the api from :any:`numpy.dot`
See: https://numpy.org/doc/stable/reference/generated/numpy.dot.html
"""
raise NotImplementedError()
def abs(self, a):
r"""
Computes the absolute value element-wise.
This function follows the api from :any:`numpy.absolute`
See: https://numpy.org/doc/stable/reference/generated/numpy.absolute.html
"""
raise NotImplementedError()
def exp(self, a):
r"""
Computes the exponential value element-wise.
This function follows the api from :any:`numpy.exp`
See: https://numpy.org/doc/stable/reference/generated/numpy.exp.html
"""
raise NotImplementedError()
def log(self, a):
r"""
Computes the natural logarithm, element-wise.
This function follows the api from :any:`numpy.log`
See: https://numpy.org/doc/stable/reference/generated/numpy.log.html
"""
raise NotImplementedError()
def sqrt(self, a):
r"""
Returns the non-ngeative square root of a tensor, element-wise.
This function follows the api from :any:`numpy.sqrt`
See: https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html
"""
raise NotImplementedError()
def power(self, a, exponents):
r"""
First tensor elements raised to powers from second tensor, element-wise.
This function follows the api from :any:`numpy.power`
See: https://numpy.org/doc/stable/reference/generated/numpy.power.html
"""
raise NotImplementedError()
def norm(self, a, axis=None, keepdims=False):
r"""
Computes the matrix frobenius norm.
This function follows the api from :any:`numpy.linalg.norm`
See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html
"""
raise NotImplementedError()
def any(self, a):
r"""
Tests whether any tensor element along given dimensions evaluates to True.
This function follows the api from :any:`numpy.any`
See: https://numpy.org/doc/stable/reference/generated/numpy.any.html
"""
raise NotImplementedError()
def isnan(self, a):
r"""
Tests element-wise for NaN and returns result as a boolean tensor.
This function follows the api from :any:`numpy.isnan`
See: https://numpy.org/doc/stable/reference/generated/numpy.isnan.html
"""
raise NotImplementedError()
def isinf(self, a):
r"""
Tests element-wise for positive or negative infinity and returns result as a boolean tensor.
This function follows the api from :any:`numpy.isinf`
See: https://numpy.org/doc/stable/reference/generated/numpy.isinf.html
"""
raise NotImplementedError()
def einsum(self, subscripts, *operands):
r"""
Evaluates the Einstein summation convention on the operands.
This function follows the api from :any:`numpy.einsum`
See: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
"""
raise NotImplementedError()
def sort(self, a, axis=-1):
r"""
Returns a sorted copy of a tensor.
This function follows the api from :any:`numpy.sort`
See: https://numpy.org/doc/stable/reference/generated/numpy.sort.html
"""
raise NotImplementedError()
def argsort(self, a, axis=None):
r"""
Returns the indices that would sort a tensor.
This function follows the api from :any:`numpy.argsort`
See: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html
"""
raise NotImplementedError()
def searchsorted(self, a, v, side="left"):
r"""
Finds indices where elements should be inserted to maintain order in given tensor.
This function follows the api from :any:`numpy.searchsorted`
See: https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html
"""
raise NotImplementedError()
def flip(self, a, axis=None):
r"""
Reverses the order of elements in a tensor along given dimensions.
This function follows the api from :any:`numpy.flip`
See: https://numpy.org/doc/stable/reference/generated/numpy.flip.html
"""
raise NotImplementedError()
def clip(self, a, a_min, a_max):
"""
Limits the values in a tensor.
This function follows the api from :any:`numpy.clip`
See: https://numpy.org/doc/stable/reference/generated/numpy.clip.html
"""
raise NotImplementedError()
def repeat(self, a, repeats, axis=None):
r"""
Repeats elements of a tensor.
This function follows the api from :any:`numpy.repeat`
See: https://numpy.org/doc/stable/reference/generated/numpy.repeat.html
"""
raise NotImplementedError()
def take_along_axis(self, arr, indices, axis):
r"""
Gathers elements of a tensor along given dimensions.
This function follows the api from :any:`numpy.take_along_axis`
See: https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html
"""
raise NotImplementedError()
def concatenate(self, arrays, axis=0):
r"""
Joins a sequence of tensors along an existing dimension.
This function follows the api from :any:`numpy.concatenate`
See: https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html
"""
raise NotImplementedError()
def zero_pad(self, a, pad_width, value=0):
r"""
Pads a tensor with a given value (0 by default).
This function follows the api from :any:`numpy.pad`
See: https://numpy.org/doc/stable/reference/generated/numpy.pad.html
"""
raise NotImplementedError()
def argmax(self, a, axis=None):
r"""
Returns the indices of the maximum values of a tensor along given dimensions.
This function follows the api from :any:`numpy.argmax`
See: https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
"""
raise NotImplementedError()
def argmin(self, a, axis=None):
r"""
Returns the indices of the minimum values of a tensor along given dimensions.
This function follows the api from :any:`numpy.argmin`
See: https://numpy.org/doc/stable/reference/generated/numpy.argmin.html
"""
raise NotImplementedError()
def mean(self, a, axis=None):
r"""
Computes the arithmetic mean of a tensor along given dimensions.
This function follows the api from :any:`numpy.mean`
See: https://numpy.org/doc/stable/reference/generated/numpy.mean.html
"""
raise NotImplementedError()
def median(self, a, axis=None):
r"""
Computes the median of a tensor along given dimensions.
This function follows the api from :any:`numpy.median`
See: https://numpy.org/doc/stable/reference/generated/numpy.median.html
"""
raise NotImplementedError()
def std(self, a, axis=None):
r"""
Computes the standard deviation of a tensor along given dimensions.
This function follows the api from :any:`numpy.std`
See: https://numpy.org/doc/stable/reference/generated/numpy.std.html
"""
raise NotImplementedError()
def linspace(self, start, stop, num, type_as=None):
r"""
Returns a specified number of evenly spaced values over a given interval.
This function follows the api from :any:`numpy.linspace`
See: https://numpy.org/doc/stable/reference/generated/numpy.linspace.html
"""
raise NotImplementedError()
def meshgrid(self, a, b):
r"""
Returns coordinate matrices from coordinate vectors (Numpy convention).
This function follows the api from :any:`numpy.meshgrid`
See: https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html
"""
raise NotImplementedError()
def diag(self, a, k=0):
r"""
Extracts or constructs a diagonal tensor.
This function follows the api from :any:`numpy.diag`
See: https://numpy.org/doc/stable/reference/generated/numpy.diag.html
"""
raise NotImplementedError()
def unique(self, a, return_inverse=False):
r"""
Finds unique elements of given tensor.
This function follows the api from :any:`numpy.unique`
See: https://numpy.org/doc/stable/reference/generated/numpy.unique.html
"""
raise NotImplementedError()
def logsumexp(self, a, axis=None):
r"""
Computes the log of the sum of exponentials of input elements.
This function follows the api from :any:`scipy.special.logsumexp`
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html
"""
raise NotImplementedError()
def stack(self, arrays, axis=0):
r"""
Joins a sequence of tensors along a new dimension.
This function follows the api from :any:`numpy.stack`
See: https://numpy.org/doc/stable/reference/generated/numpy.stack.html
"""
raise NotImplementedError()
def outer(self, a, b):
r"""
Computes the outer product between two vectors.
This function follows the api from :any:`numpy.outer`
See: https://numpy.org/doc/stable/reference/generated/numpy.outer.html
"""
raise NotImplementedError()
def reshape(self, a, shape):
r"""
Gives a new shape to a tensor without changing its data.
This function follows the api from :any:`numpy.reshape`
See: https://numpy.org/doc/stable/reference/generated/numpy.reshape.html
"""
raise NotImplementedError()
def seed(self, seed=None):
r"""
Sets the seed for the random generator.
This function follows the api from :any:`numpy.random.seed`
See: https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html
"""
raise NotImplementedError()
def rand(self, *size, type_as=None):
r"""
Generate uniform random numbers.
This function follows the api from :any:`numpy.random.rand`
See: https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html
"""
raise NotImplementedError()
def randn(self, *size, type_as=None):
r"""
Generate normal Gaussian random numbers.
This function follows the api from :any:`numpy.random.rand`
See: https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html
"""
raise NotImplementedError()
def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
r"""
Creates a sparse tensor in COOrdinate format.
This function follows the api from :any:`scipy.sparse.coo_matrix`
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
"""
raise NotImplementedError()
def issparse(self, a):
r"""
Checks whether or not the input tensor is a sparse tensor.
This function follows the api from :any:`scipy.sparse.issparse`
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html
"""
raise NotImplementedError()
def tocsr(self, a):
r"""
Converts this matrix to Compressed Sparse Row format.
This function follows the api from :any:`scipy.sparse.coo_matrix.tocsr`
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsr.html
"""
raise NotImplementedError()
def eliminate_zeros(self, a, threshold=0.0):
r"""
Removes entries smaller than the given threshold from the sparse tensor.
This function follows the api from :any:`scipy.sparse.csr_matrix.eliminate_zeros`
See: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csr_matrix.eliminate_zeros.html
"""
raise NotImplementedError()
def todense(self, a):
r"""
Converts a sparse tensor to a dense tensor.
This function follows the api from :any:`scipy.sparse.csr_matrix.toarray`
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html
"""
raise NotImplementedError()
def where(self, condition, x, y):
r"""
Returns elements chosen from x or y depending on condition.
This function follows the api from :any:`numpy.where`
See: https://numpy.org/doc/stable/reference/generated/numpy.where.html
"""
raise NotImplementedError()
def copy(self, a):
r"""
Returns a copy of the given tensor.
This function follows the api from :any:`numpy.copy`
See: https://numpy.org/doc/stable/reference/generated/numpy.copy.html
"""
raise NotImplementedError()
def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
r"""
Returns True if two arrays are element-wise equal within a tolerance.
This function follows the api from :any:`numpy.allclose`
See: https://numpy.org/doc/stable/reference/generated/numpy.allclose.html
"""
raise NotImplementedError()
def dtype_device(self, a):
r"""
Returns the dtype and the device of the given tensor.
"""
raise NotImplementedError()
def assert_same_dtype_device(self, a, b):
r"""
Checks whether or not the two given inputs have the same dtype as well as the same device
"""
raise NotImplementedError()
def squeeze(self, a, axis=None):
r"""
Remove axes of length one from a.
This function follows the api from :any:`numpy.squeeze`.
See: https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
"""
raise NotImplementedError()
def bitsize(self, type_as):
r"""
Gives the number of bits used by the data type of the given tensor.
"""
raise NotImplementedError()
def device_type(self, type_as):
r"""
Returns CPU or GPU depending on the device where the given tensor is located.
"""
raise NotImplementedError()
def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
r"""
Executes a benchmark of the given callable with the given arguments.
"""
raise NotImplementedError()
def solve(self, a, b):
r"""
Solves a linear matrix equation, or system of linear scalar equations.
This function follows the api from :any:`numpy.linalg.solve`.
See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
"""
raise NotImplementedError()
def trace(self, a):
r"""
Returns the sum along diagonals of the array.
This function follows the api from :any:`numpy.trace`.
See: https://numpy.org/doc/stable/reference/generated/numpy.trace.html
"""
raise NotImplementedError()
def inv(self, a):
r"""
Computes the inverse of a matrix.
This function follows the api from :any:`scipy.linalg.inv`.
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html
"""
raise NotImplementedError()
def sqrtm(self, a):
r"""
Computes the matrix square root.
Requires input symmetric positive semi-definite.
This function follows the api from :any:`scipy.linalg.sqrtm`,
allowing batches.
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sqrtm.html
"""
raise NotImplementedError()
def eigh(self, a):
r"""
Computes the eigenvalues and eigenvectors of a symmetric tensor.
This function follows the api from :any:`scipy.linalg.eigh`.
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html
"""
raise NotImplementedError()
def kl_div(self, p, q, mass=False, eps=1e-16):
r"""
Computes the (Generalized) Kullback-Leibler divergence.
This function follows the api from :any:`scipy.stats.entropy`.
Parameter eps is used to avoid numerical errors and is added in the log.
.. math::
KL(p,q) = \langle \mathbf{p}, log(\mathbf{p} / \mathbf{q} + eps \rangle
+ \mathbb{1}_{mass=True} \langle \mathbf{q} - \mathbf{p}, \mathbf{1} \rangle
See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
"""
raise NotImplementedError()
def isfinite(self, a):
r"""
Tests element-wise for finiteness (not infinity and not Not a Number).
This function follows the api from :any:`numpy.isfinite`.
See: https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html
"""
raise NotImplementedError()
def array_equal(self, a, b):
r"""
True if two arrays have the same shape and elements, False otherwise.
This function follows the api from :any:`numpy.array_equal`.
See: https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html
"""
raise NotImplementedError()
def is_floating_point(self, a):
r"""
Returns whether or not the input consists of floats
"""
raise NotImplementedError()
def tile(self, a, reps):
r"""
Construct an array by repeating a the number of times given by reps
See: https://numpy.org/doc/stable/reference/generated/numpy.tile.html