|
653 | 653 | "aggregated_values = ds.reindex(kdims=[\"body_part\",\"product\"], vdims=[\"incident_count\", \"age\"]).aggregate([\"body_part\",\"product\"], function={'incident_count':'sum', 'age':'mean'})\n",
|
654 | 654 | "aggregated_values.to(hv.HeatMap, kdims=[\"body_part\",\"product\"], vdims=[\"incident_count\", \"age\"])"
|
655 | 655 | ]
|
| 656 | + }, |
| 657 | + { |
| 658 | + "cell_type": "markdown", |
| 659 | + "metadata": {}, |
| 660 | + "source": [ |
| 661 | + "## Plotly " |
| 662 | + ] |
| 663 | + }, |
| 664 | + { |
| 665 | + "cell_type": "code", |
| 666 | + "execution_count": null, |
| 667 | + "metadata": { |
| 668 | + "collapsed": true |
| 669 | + }, |
| 670 | + "outputs": [], |
| 671 | + "source": [ |
| 672 | + "subset = data.sample(200)\n", |
| 673 | + "\n", |
| 674 | + "trace = go.Scatter(x=subset['day'], y=subset['age'], \n", |
| 675 | + " mode='markers',\n", |
| 676 | + " marker={'size': 10, 'opacity': 0.7})\n", |
| 677 | + "\n", |
| 678 | + "iplot([trace])" |
| 679 | + ] |
| 680 | + }, |
| 681 | + { |
| 682 | + "cell_type": "code", |
| 683 | + "execution_count": null, |
| 684 | + "metadata": { |
| 685 | + "collapsed": true |
| 686 | + }, |
| 687 | + "outputs": [], |
| 688 | + "source": [ |
| 689 | + "subset = data.sample(200)\n", |
| 690 | + "\n", |
| 691 | + "male = subset[ subset['sex']=='Male' ]\n", |
| 692 | + "female = subset[ subset['sex']=='Female']\n", |
| 693 | + "\n", |
| 694 | + "trace1 = go.Scatter(x=male['day'], y=male['age'], text=male['narr'],\n", |
| 695 | + " mode='markers',\n", |
| 696 | + " marker={'size': 10, 'opacity': 0.7},\n", |
| 697 | + " name='Male')\n", |
| 698 | + "trace2 = go.Scatter(x=female['day'], y=female['age'], text=female['narr'],\n", |
| 699 | + " mode='markers',\n", |
| 700 | + " marker={'size': 10, 'opacity': 0.7},\n", |
| 701 | + " name='Female')\n", |
| 702 | + "\n", |
| 703 | + "layout = go.Layout(xaxis={'title':'Day of month'},\n", |
| 704 | + " yaxis={'title':'Patient age'},\n", |
| 705 | + " hovermode='closest')\n", |
| 706 | + "\n", |
| 707 | + "fig = go.Figure(data=[trace1, trace2], layout=layout)\n", |
| 708 | + "\n", |
| 709 | + "iplot(fig)" |
| 710 | + ] |
| 711 | + }, |
| 712 | + { |
| 713 | + "cell_type": "code", |
| 714 | + "execution_count": null, |
| 715 | + "metadata": { |
| 716 | + "collapsed": true |
| 717 | + }, |
| 718 | + "outputs": [], |
| 719 | + "source": [ |
| 720 | + "trace = go.Box(x = data['location'], y=data['age'])\n", |
| 721 | + "\n", |
| 722 | + "layout = {\n", |
| 723 | + " 'yaxis': {'rangemode': 'tozero',\n", |
| 724 | + " 'title': 'Patient age'}\n", |
| 725 | + "}\n", |
| 726 | + "\n", |
| 727 | + "fig = {'data': [trace], 'layout': layout}\n", |
| 728 | + "\n", |
| 729 | + "iplot(fig)" |
| 730 | + ] |
| 731 | + }, |
| 732 | + { |
| 733 | + "cell_type": "code", |
| 734 | + "execution_count": null, |
| 735 | + "metadata": { |
| 736 | + "collapsed": true |
| 737 | + }, |
| 738 | + "outputs": [], |
| 739 | + "source": [ |
| 740 | + "trace1 = go.Histogram(x=data[data['sex']=='Male']['age'], \n", |
| 741 | + " opacity=0.7,\n", |
| 742 | + " name='Male')\n", |
| 743 | + "\n", |
| 744 | + "trace2 = go.Histogram(x=data[data['sex']=='Female']['age'], \n", |
| 745 | + " opacity=0.7,\n", |
| 746 | + " name='Female')\n", |
| 747 | + "\n", |
| 748 | + "layout = go.Layout(barmode='overlay')\n", |
| 749 | + "fig = go.Figure(data=[trace1, trace2], layout=layout)\n", |
| 750 | + "\n", |
| 751 | + "iplot(fig)" |
| 752 | + ] |
| 753 | + }, |
| 754 | + { |
| 755 | + "cell_type": "code", |
| 756 | + "execution_count": null, |
| 757 | + "metadata": { |
| 758 | + "collapsed": true |
| 759 | + }, |
| 760 | + "outputs": [], |
| 761 | + "source": [ |
| 762 | + "table = data.pivot_table(index='body_part', columns='product', \n", |
| 763 | + " values='incident_count', aggfunc=sum, fill_value=0)\n", |
| 764 | + "\n", |
| 765 | + "trace = go.Heatmap(z=table.as_matrix(), \n", |
| 766 | + " x=table.columns, y=table.index,\n", |
| 767 | + " colorscale='Greens',\n", |
| 768 | + " reversescale=True)\n", |
| 769 | + "\n", |
| 770 | + "iplot([trace])" |
| 771 | + ] |
| 772 | + }, |
| 773 | + { |
| 774 | + "cell_type": "code", |
| 775 | + "execution_count": null, |
| 776 | + "metadata": { |
| 777 | + "collapsed": true |
| 778 | + }, |
| 779 | + "outputs": [], |
| 780 | + "source": [ |
| 781 | + "subset = data.sample(300)\n", |
| 782 | + "\n", |
| 783 | + "trace = go.Scatter3d(x=subset['location'], y=subset['product'], z=subset['age'], \n", |
| 784 | + " mode='markers',\n", |
| 785 | + " marker={'opacity': 0.7},\n", |
| 786 | + " text=subset['narr'])\n", |
| 787 | + "\n", |
| 788 | + "iplot([trace])" |
| 789 | + ] |
656 | 790 | }
|
657 | 791 | ],
|
658 | 792 | "metadata": {
|
|
0 commit comments