-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecutor.py
351 lines (311 loc) · 16.7 KB
/
executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import math
import pickle
from tqdm import tqdm
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.cluster.hierarchy import dendrogram, fcluster, linkage, to_tree
from scipy.spatial.distance import squareform
from scipy.stats.stats import pearsonr, spearmanr
import torch
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
AutoTokenizer, Wav2Vec2FeatureExtractor,
Wav2Vec2Model)
from mplm_sim.utils import *
class EmbeddingLoader(object):
def __init__(self, model, lang, device=torch.device('cuda:0')):
self.device = device
self.config = AutoConfig.from_pretrained(model, output_hidden_states=True)
if 'GPT' in model or 'bloom' in model:
self.emb_model = AutoModelForCausalLM.from_pretrained(model, config=self.config)
elif 'mt5' in model or 'm2m' in model or 'nllb' in model or 'byt5' in model:
self.emb_model = AutoModel.from_pretrained(model, config=self.config).encoder
elif 'wav2vec2' in model:
self.emb_model = Wav2Vec2Model.from_pretrained(model, config=self.config)
else:
self.emb_model = AutoModel.from_pretrained(model, config=self.config)
self.emb_model.eval()
self.emb_model.to(self.device)
if 'wav2vec2' in model:
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(model, return_attention_mask=True,
cache_dir=cache_dir)
elif 'nllb' in model:
self.tokenizer = AutoTokenizer.from_pretrained(model, src_lang=lang)
else:
self.tokenizer = AutoTokenizer.from_pretrained(model)
def get_embed_list_encoder(self, sent_batch):
with torch.no_grad():
inputs = self.tokenizer(sent_batch, truncation=True, return_tensors='pt')
hiddens = self.emb_model(**inputs.to(self.device))['hidden_states']
mask = inputs['attention_mask']
emb = []
for hidden in hiddens:
emb.append(((hidden * mask.unsqueeze(2).float()).sum(1) / mask.sum(1).unsqueeze(
-1).float()).cpu().detach().numpy()[0])
return emb
def get_embed_list_decoder(self, sent_batch):
with torch.no_grad():
inputs = self.tokenizer(sent_batch, truncation=True, return_tensors='pt')
hiddens = self.emb_model(**inputs.to(self.device))['hidden_states']
input_ids = inputs['input_ids']
seq_len = input_ids.size(1)
# position weights for each token
pos_weights = torch.arange(seq_len, 0, -1.0, device=self.device)
pos_weights = pos_weights / pos_weights.sum()
# weight the hidden states by their position
# Warning: the following code only work for batch size=1
emb = []
for hidden in hiddens:
weighted_hiddens = hidden.view(seq_len, -1) * pos_weights.view(-1, 1)
emb.append(weighted_hiddens.sum(0).cpu().detach().numpy())
return emb
@staticmethod
def get_downsampling_mask(attention_mask, downsampling_rate):
new_seq_length = attention_mask.size(1) // downsampling_rate
new_attention_mask = torch.zeros((attention_mask.size(0), new_seq_length), device=attention_mask.device)
for i in range(new_seq_length):
start_index = i * downsampling_rate
end_index = start_index + downsampling_rate
new_attention_mask[:, i] = attention_mask[:, start_index:end_index].sum(1)
return new_attention_mask
def get_embed_list_canine(self, sent_batch):
with torch.no_grad():
inputs = self.tokenizer(sent_batch, truncation=True, return_tensors='pt')
hiddens = self.emb_model(**inputs.to(self.device))['hidden_states']
attn_mask = inputs['attention_mask']
downsampling_mask = self.get_downsampling_mask(attn_mask, self.config.downsampling_rate)
emb = []
for hidden in hiddens:
mask = attn_mask if hidden.size(1) == attn_mask.size(1) else downsampling_mask
emb.append(((hidden * mask.unsqueeze(2).float()).sum(1) / mask.sum(1).unsqueeze(
-1).float()).cpu().detach().numpy()[0])
return emb
def get_embed_list_wav2vec2(self, audio_batch):
with torch.no_grad():
inputs = self.processor(audio_batch, padding=True, return_tensors="pt", sampling_rate=16000)
hiddens = self.emb_model(**inputs.to(self.device))['hidden_states']
emb = []
for hidden in hiddens:
emb.append(hidden.mean(1).cpu().detach().numpy()[0])
return emb
def get_emb(dataset, model, lang, device):
embed_loader = EmbeddingLoader(model=model, lang=lang, device=device)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
embs = []
for _, data in enumerate(tqdm(data_loader)):
if 'GPT' in model or 'bloom' in model:
emb = embed_loader.get_embed_list_decoder(data)
elif 'canine' in model:
emb = embed_loader.get_embed_list_canine(data)
elif 'wav2vec2' in model:
emb = embed_loader.get_embed_list_wav2vec2(data['audio']['array'].view(-1))
else:
emb = embed_loader.get_embed_list_encoder(data)
embs.append(emb)
return embs
class Executor:
def __init__(self, model_name, corpus_name, corpus_path, corpus_type='text', save_path=None, device='0'):
if model_name not in model2type:
raise ValueError('%s not exist in %s' % (model_name, model2type.keys()))
if corpus_type not in ['text', 'speech']:
raise ValueError('corpus_type should be text or speech')
self.model_name = model_name
self.model_type = model2type[model_name]
self.corpus_name = corpus_name
self.corpus_type = corpus_type
self.corpus_path = corpus_path
self.lang_path = os.path.join(os.path.dirname(__file__), 'lang_list/')
self.metadata_sim_path = os.path.join(os.path.dirname(__file__), 'sim/')
if not save_path:
self.save_path = 'save/' + model_name.split('/')[-1] + '_' + corpus_name + '/'
else:
self.save_path = save_path
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
self.device = device
self.logger = get_logger(self.save_path + 'result.log')
def run(self):
# Get common languages
with open(self.lang_path + self.model_type + '.txt', 'r') as f:
lines = f.readlines()
model_langs = [line.strip() for line in lines]
corpus_langs = [f.replace('.txt', '') for f in os.listdir(self.corpus_path) if '.txt' in f]
lang_scripts = list(set(model_langs) & set(corpus_langs))
lang_scripts.sort()
langs = list(set([lang.split('_')[0] for lang in lang_scripts]))
self.logger.info('Model langs: %s; Corpus langs: %s; Common lang_scripts: %s; Common langs: %s' % (
len(model_langs), len(corpus_langs), len(lang_scripts), len(langs)))
# Read corpora
lang2emb = {}
for lang in lang_scripts:
save_fname = self.save_path + lang
if os.path.exists(save_fname):
with open(save_fname, 'rb') as f:
embs = pickle.load(f)
else:
sents = read_file(self.corpus_path, self.corpus_type, lang)
# Sent Num * Layer Num * Hidden Size
embs = get_emb(sents, self.model_name, lang, torch.device('cuda:' + self.device))
with open(save_fname, 'wb') as f:
pickle.dump(embs, f)
lang2emb[lang] = embs
sent_num, layer_num, hidden_size = len(embs), len(embs[0]), len(embs[0][0])
torch.cuda.empty_cache()
self.logger.info('Sent num: %s; Layer num: %s; Hidden size: %s' % (sent_num, layer_num, hidden_size))
# Cosine similarity for each sentence
df_layer = [pd.DataFrame(index=lang_scripts, columns=lang_scripts) for _ in range(layer_num)]
for layer_id in range(layer_num):
for lang1 in lang_scripts:
for lang2 in lang_scripts:
if lang2 <= lang1:
continue
df_layer[layer_id][lang2][lang1] = 0
df_layer[layer_id][lang1][lang2] = 0
for sent_id in range(sent_num):
emb1, emb2 = [], []
for layer_id in range(layer_num):
for lang1 in lang_scripts:
for lang2 in lang_scripts:
if lang2 <= lang1:
continue
emb1.append(lang2emb[lang1][sent_id][layer_id])
emb2.append(lang2emb[lang2][sent_id][layer_id])
emb1, emb2 = np.array(emb1), np.array(emb2)
sim = np.sum(emb1 * emb2, axis=1) / (norm(emb1, axis=1) * norm(emb2, axis=1))
sim_id = 0
for layer_id in range(layer_num):
df = pd.DataFrame(index=lang_scripts, columns=lang_scripts)
for lang1 in lang_scripts:
for lang2 in lang_scripts:
if lang2 <= lang1:
continue
df[lang1][lang2] = sim[sim_id]
df[lang2][lang1] = sim[sim_id]
sim_id += 1
df_layer[layer_id] = df_layer[layer_id].add(df.loc[lang_scripts, lang_scripts])
for layer_id in range(layer_num):
# Average cosine similarity
tsv_path = self.save_path + 'sents_' + 'layer' + str(layer_id) + '.tsv'
df_layer[layer_id] = df_layer[layer_id] / sent_num
df_layer[layer_id].to_csv(tsv_path, sep='\t')
# Get metadata similarity
features_origin = ['edit_' + self.corpus_name, 'genetic', 'geographic', 'syntactic', 'inventory',
'phonological', 'featural']
features = []
feature2df = {}
for feature in features_origin:
tsv_path = self.metadata_sim_path + feature + '.tsv'
if os.path.exists(tsv_path):
df_feature = pd.read_csv(tsv_path, sep='\t', index_col=0)
features.append(feature)
feature2df[feature] = df_feature
# Correlation between LM sim and Metadata sim
df_p = pd.DataFrame(index=features, columns=range(layer_num))
df_lang_p = {lang: pd.DataFrame(index=features, columns=range(layer_num)) for lang in lang_scripts}
df_feature_p = {feature: pd.DataFrame(index=lang_scripts, columns=range(layer_num)) for feature in features}
df_s = pd.DataFrame(index=features, columns=range(layer_num))
df_lang_s = {lang: pd.DataFrame(index=features, columns=range(layer_num)) for lang in lang_scripts}
df_feature_s = {feature: pd.DataFrame(index=lang_scripts, columns=range(layer_num)) for feature in features}
lang2result = {layer_id: [] for layer_id in range(layer_num)}
for layer_id in range(layer_num):
# Get the model and feature ranking for each language
lang2mrank = {}
lang2frank = {feature: {} for feature in features}
for lang in lang_scripts:
mrank = df_layer[layer_id][lang].sort_values(ascending=False).index.tolist()
mrank = [rank for rank in mrank if rank != lang and rank in lang_scripts]
lang2mrank[lang] = mrank
for feature, df_feature in feature2df.items():
if lang not in df_feature:
lang2frank[feature][lang] = []
continue
indexs = df_feature[lang].index.tolist()
values = df_feature[lang].values.tolist()
flist = {index: value for index, value in zip(indexs, values) if index in mrank}
flist = sorted(flist.items(), key=lambda x: -x[1])
frank = []
cur_value = -1
group = []
for index, value in flist:
if value == cur_value or cur_value == -1:
group.append(index)
else:
frank.append(group)
group = [index]
cur_value = value
frank.append(group)
lang2frank[feature][lang] = frank
# Correlation between LM sim and Metadata sim
for feature, df_feature in feature2df.items():
# Get two sim lists for each langauge to compute correlation
sim_lang_list1, sim_lang_list2 = {lang: [] for lang in lang_scripts}, {lang: [] for lang in lang_scripts}
for lang1 in lang_scripts:
for lang2 in lang_scripts:
if lang2 <= lang1:
continue
if lang1 not in df_feature or lang2 not in df_feature:
continue
sim_lang_list1[lang1].append(df_layer[layer_id][lang1][lang2])
sim_lang_list2[lang1].append(df_feature[lang1][lang2])
sim_lang_list1[lang2].append(df_layer[layer_id][lang1][lang2])
sim_lang_list2[lang2].append(df_feature[lang1][lang2])
coff_p_sum, coff_s_sum, coff_lang_cnt = 0, 0, 0
for lang in lang_scripts:
mrank = lang2mrank[lang]
coff_p = pearsonr(sim_lang_list1[lang], sim_lang_list2[lang])
coff_s = spearmanr(sim_lang_list1[lang], sim_lang_list2[lang])
if not math.isnan(coff_p[0]):
coff_p_sum += coff_p[0]
coff_s_sum += coff_s[0]
coff_lang_cnt += 1
df_lang_p[lang][layer_id][feature] = coff_p[0]
df_lang_s[lang][layer_id][feature] = coff_s[0]
df_feature_p[feature][layer_id][lang] = coff_p[0]
df_feature_s[feature][layer_id][lang] = coff_s[0]
coff_p = coff_p_sum / coff_lang_cnt
coff_s = coff_s_sum / coff_lang_cnt
df_p[layer_id][feature] = coff_p
df_s[layer_id][feature] = coff_s
# Hierarchical Clustering
mat = (1 - df_layer[layer_id].fillna(1)).values
dists = squareform(mat)
linkage_matrix = linkage(dists, 'complete')
dendro_width = len(lang_scripts)
if dendro_width > 50:
plt.figure(figsize=(16, dendro_width / 2))
dendrogram(linkage_matrix, labels=df_layer[layer_id].columns.values.tolist(), orientation='left',
leaf_font_size=16)
for line in plt.gca().get_lines():
line.set_linewidth(3)
else:
plt.figure(figsize=(dendro_width / 4, 4))
dendrogram(linkage_matrix, labels=df_layer[layer_id].columns.values.tolist(), leaf_rotation=90,
leaf_font_size=16)
for line in plt.gca().get_lines():
line.set_linewidth(3)
tag = 'dendrogram_' + str(layer_id)
# plt.title(tag)
plt_path = self.save_path + tag + '.pdf'
# plt.autoscale()
plt.savefig(plt_path)
plt.close()
tsv_path = self.save_path + 'coff_p.tsv'
df_p.to_csv(tsv_path, sep='\t')
for feature in features:
df_feature_p[feature]['mean'] = df_feature_p[feature].mean(axis=1)
df_feature_p[feature]['max'] = df_feature_p[feature].max(axis=1)
df_feature_p[feature].to_csv(tsv_path, sep='\t')
mean = df_feature_p[feature][df_feature_p[feature]['max'] != 0]['max'].mean()
median = df_feature_p[feature][df_feature_p[feature]['max'] != 0]['max'].median()
logging.info('Pearson of %s: mean %s, median %s' % (feature, mean, median))
tsv_path = self.save_path + 'coff_s.tsv'
df_s.to_csv(tsv_path, sep='\t')
for feature in features:
df_feature_s[feature]['mean'] = df_feature_s[feature].mean(axis=1)
df_feature_s[feature]['max'] = df_feature_s[feature].max(axis=1)
df_feature_s[feature].to_csv(tsv_path, sep='\t')
mean = df_feature_s[feature][df_feature_s[feature]['max'] != 0]['max'].mean()
median = df_feature_s[feature][df_feature_s[feature]['max'] != 0]['max'].median()
logging.info('Spearman of %s: mean %s, median %s' % (feature, mean, median))