-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxception.py
32 lines (25 loc) · 1019 Bytes
/
xception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.xception import Xception
from keras.metrics import top_k_categorical_accuracy
def top_5(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=5)
if __name__ == '__main__':
batch_size = 16
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
'data',
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
model = Xception(include_top=True, weights=None, classes=10)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy', top_5])
model.fit_generator(
train_generator,
steps_per_epoch=125 // batch_size,
epochs=10)
model.save('xception10.h5')