-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayesian_Matting.m
190 lines (167 loc) · 5.67 KB
/
Bayesian_Matting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function Bayesian_Matting( oriVar , Iteration , image , trimap )
FThreshold = 255 * 0.95;
BThreshold = 255 * 0.05;
%oriVar = 8;
%Iteration = 10;
%[File,Path,DialogIndex] = uigetfile({'*.jpg;*.jpeg;*.png;*.gif;*.bmp;*.tiff','Image Files (.jpg, .png, .gif, .bmp, .tiff'},'Select an Image You want to mat ');
oriImg = imread(image);
%[File,Path, DialogIndex] = uigetfile({'*.jpg;*.jpeg;*.png;*.gif;*.bmp;*.tiff','Image Files (.jpg, .png, .gif, .bmp, .tiff'},'Select an ');
triMap = imread(trimap);
if size(triMap,3)~=1,
triMap = rgb2gray(triMap);
end
frontImg = double(oriImg);
backImg = double(oriImg);
unknownImg = double(oriImg);
width = size(oriImg,1);
height = size(oriImg,2);
for b= 1:height
for a = 1:width
for i = 1 : 3
if triMap(a,b)>=FThreshold,
backImg(a,b,i) = 0;
unknownImg(a,b,i)=0;
end
if triMap(a,b)<=BThreshold,
frontImg(a,b,i) = 0;
unknownImg(a,b,i)=0;
end
if triMap(a,b)<FThreshold&&triMap(a,b)>BThreshold,
backImg(a,b,i) = 0;
frontImg(a,b,i)=0;
end
end
end
end
figure,
imshow([uint8(frontImg) uint8(backImg) uint8(unknownImg)]);
drawnow;
%%
% Compute mean and Covariance Matrix
for i=1:3
temp = frontImg(:,:,i);
Fmean(i) =mean(temp(find(temp)));
temp = backImg(:,:,i);
Bmean(i) = mean(temp(find(temp)));
temp = unknownImg(:,:,i);
Umean(i) =mean(temp(find(temp)));
temp = oriImg(:,:,i);
oriMean(i) = mean(temp(find(temp)));
end
coF = [0 0 0;0 0 0;0 0 0];
coB = [0 0 0;0 0 0;0 0 0];
NF= 0 ; NB = 0;
for b=1:height,
for a=1:width,
if any(frontImg(a,b,:)),
shiftF = [ (frontImg(a,b,1)-Fmean(1)) (frontImg(a,b,2)-Fmean(2)) (frontImg(a,b,3)-Fmean(3)) ];
coF = coF +(shiftF' * shiftF);
NF = NF +1;
end
if any(backImg(a,b,:)),
shiftB = [ (backImg(a,b,1)-Bmean(1)) (backImg(a,b,2)-Bmean(2)) (backImg(a,b,3)-Bmean(3)) ];
coB = coB + (shiftB' * shiftB);
NB = NB +1;
end
end
end
coF = coF / NF;
coB = coB / NB;
temp = 0;
oriImg = double(oriImg);
for b=1:height,
for a=1:width,
temp = temp +((oriImg(a,b,1)- oriMean(1))^2 + (oriImg(a,b,2)- oriMean(2))^2 + (oriImg(a,b,3)- oriMean(3))^2);
end
end
%oriVar = temp / (height * width*255);
%%
unknownAlpha = double(triMap) / 255.0;
unknownF = unknownImg;
unknownB = unknownImg;
invcoF = inv(coF);
invcoB = inv(coB);
for b=1:height
for a=1:width
if any(unknownImg(a,b,:)),
alpha = 0;
count = 0;
if(a>1&&b>1)
alpha = alpha + unknownAlpha(a-1,b-1);
count = count +1;
end
if(b>1)
alpha = alpha + unknownAlpha(a,b-1);
count = count +1;
end
if(a<width&&b>1)
alpha = alpha + unknownAlpha(a+1,b-1);
count = count +1;
end
if(a>1)
alpha = alpha + unknownAlpha(a-1,b);
count = count +1;
end
if(a<width)
alpha = alpha + unknownAlpha(a+1,b);
count = count +1;
end
if(a>1&&b<height)
alpha = alpha + unknownAlpha(a-1,b+1);
count = count +1;
end
if(b<height)
alpha = alpha + unknownAlpha(a,b+1);
count = count +1;
end
if(a<width&&b<height)
alpha = alpha + unknownAlpha(a+1,b+1);
count = count +1;
end
alpha = alpha / count;
preAlpha = alpha;
for i=1:Iteration,
UL = invcoF + eye(3)*(alpha*alpha)/(oriVar*oriVar);
UR =eye(3)*alpha*(1-alpha)/(oriVar*oriVar);
DL = eye(3)*alpha*(1-alpha)/(oriVar*oriVar);
DR = invcoB + eye(3)*(1-alpha)*(1-alpha)/(oriVar*oriVar);
A = [UL UR;DL DR];
C = reshape(unknownImg(a,b,:),3,1);
BU = invcoF*Fmean' + C*alpha/(oriVar*oriVar);
BD = invcoB*Bmean' + C*(1-alpha)/(oriVar*oriVar);
B = [BU; BD];
x = A\B;
tempF = x(1:3); tempB = x(4:6);
alpha = dot((C - tempB), (tempF - tempB)) / norm(tempF-tempB).^2;
if abs(preAlpha - alpha)< 0.0001,
break;
end
preAlpha = alpha;
end
unknownF(a,b,:) = tempF;
unknownB(a,b,:) = tempB;
unknownAlpha(a,b) = alpha;
end
end
end
% imshow(uint8(unknownAlpha));
%%
[File,Path,Index]= uigetfile({'*.jpg;*.jpeg;*.png;*.gif;*.bmp;*.tiff','Image Files (.jpg, .png, .gif, .bmp, .tiff'},'Select an new Background ');
newBack = imread([Path File]);
newBack = imresize(newBack,[width height]);
newBack = double(newBack);
for i=1:3
newBack(:,:,i) = unknownF(:,:,i).*unknownAlpha(:,:) + newBack(:,:,i).*(1-unknownAlpha(:,:));
end
for a=1:width
for b=1:height
if(triMap(a,b)>=FThreshold)
newBack(a,b,:) = oriImg(a,b,:);
end
end
end
figure;
imshow(uint8(newBack));
imwrite(uint8(newBack),'Bear.png')
drawnow;
end