-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
276 lines (224 loc) · 10.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.nn as nn
import torch.nn.functional as F
# from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
class PatchEmbedding(nn.Module):
def __init__(self, in_channels: int, patch_size: int, emb_size: int):
super(PatchEmbedding, self).__init__()
self.patch_size = patch_size
self.proj = nn.Conv2d(in_channels, emb_size, kernel_size=patch_size, stride=patch_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x) # [B, emb_size, H', W']
return x.flatten(2).transpose(1, 2) # [B, num_patches, emb_size]
class PatchEmbedding2D(nn.Module):
def __init__(self, in_channels: int, out_channels: int, patch_size: int, permute: bool = True):
super(PatchEmbedding2D, self).__init__()
self.patch_size = patch_size
self.permute = permute
self.proj = nn.Unfold(kernel_size=patch_size, stride=patch_size)
self.linear = nn.Linear(in_channels * patch_size ** 2, out_channels)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.permute:
B, H, W, C = x.shape
x = x.permute(0, 3, 1, 2)
else:
B, C, H, W = x.shape
H, W = H // self.patch_size, W // self.patch_size
x = self.proj(x).view(B, -1, H, W).permute(0, 2, 3, 1)
x = self.linear(x)
return x
class PositionalEmbedding(nn.Module):
def __init__(self, emb_size, max_length):
super(PositionalEmbedding, self).__init__()
# self.pos_emb = nn.Parameter(torch.zeros(1, emb_size))
self.pos_emb = nn.Parameter(torch.randn(1, emb_size))
def forward(self, x):
return x + self.pos_emb
class SlidingKernelAttention(nn.Module):
def __init__(self, dim, heads=8, kernel_size=4, stride=2):
super(SlidingKernelAttention, self).__init__()
self.heads = heads
self.scale = dim ** -0.5
self.kernel_size = kernel_size
self.stride = stride
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim)
def forward(self, x):
B, L, C = x.shape
out = torch.zeros_like(x)
for i in range(0, L - self.kernel_size + 1, self.stride):
x_view = x[:, i:i+self.kernel_size, :]
attn_out = self.comp_attention(x_view)
out[:, i:i+self.kernel_size, :] += attn_out
return out
def comp_attention(self, x_view):
B, L, C = x_view.shape
qkv = self.to_qkv(x_view).chunk(3, dim=-1)
q, k, v = map(lambda t: t.reshape(B, L, self.heads, C // self.heads).permute(0, 2, 1, 3), qkv)
dots = (q @ k.transpose(-1, -2)) * self.scale
attn = dots.softmax(dim=-1)
out = attn @ v
out = out.transpose(1, 2).reshape(B, L, C)
return self.to_out(out)
# def flash_attention(self, x_view):
# B, L, C = x_view.shape
# qkv = self.to_qkv(x_view).chunk(3, dim=-1)
# q, k, v = map(lambda t: t.reshape(B, L, self.heads, C // self.heads).permute(0, 2, 1, 3), qkv)
# attn = flash_attn_func(q, k, v, self.scale, self.heads, self.kernel_size, self.stride)
# out = attn @ v
# out = out.transpose(1, 2).reshape(B, L, C)
# return self.to_out(out)
class SlidingKernelAttention2D(nn.Module):
def __init__(self, dim: int, kernel_size: int = 2, stride: int = 1, heads: int = 8, rel_pos: bool = True):
super(SlidingKernelAttention2D, self).__init__()
self.heads = heads
self.kernel_size = kernel_size
self.stride = stride
self.scale = (dim // heads) ** -0.5
self.rel_pos = rel_pos
# Relative positional bias
self.rel_embed_h = nn.Parameter(torch.randn(kernel_size, dim // heads))
self.rel_embed_w = nn.Parameter(torch.randn(kernel_size, dim // heads))
# QKV projection layer
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
# Output projection layer
self.to_out = nn.Linear(dim, dim)
def comp_attention(self, x_view):
B, L, C = x_view.shape
qkv = self.to_qkv(x_view).chunk(3, dim=-1)
q, k, v = map(lambda t: t.reshape(B, L, self.heads, C // self.heads).permute(0, 2, 1, 3), qkv)
dots = (q @ k.transpose(-1, -2)) * self.scale
if self.rel_pos:
h_bias = self.relative_positional_bias(q, self.rel_embed_h)
w_bias = self.relative_positional_bias(q, self.rel_embed_w)
dots = dots + h_bias + w_bias
attn = dots.softmax(dim=-1)
out = attn @ v
out = out.transpose(1, 2).reshape(B, L, C)
return self.to_out(out)
def relative_positional_bias(self, q, rel_embed):
B, H, L, C = q.shape
scores = q @ rel_embed.transpose(0, 1)
scores = scores.reshape(B, H, L, 1, self.kernel_size).expand(-1, -1, -1, L, -1)
scores = scores.sum(dim=-1)
return scores
def forward(self, x):
B, H, W, C = x.shape
out = torch.zeros_like(x)
for i in range(0, H - self.kernel_size + 1, self.stride):
for j in range(0, W - self.kernel_size + 1, self.stride):
x_window = x[:, i:i+self.kernel_size, j:j+self.kernel_size, :]
# Reshape for attention
x_view = x_window.permute(0, 3, 1, 2).reshape(B, -1, C)
attn_out = self.comp_attention(x_view)
# Reshape back to spatial format
attn_out = attn_out.reshape(B, C, self.kernel_size, self.kernel_size).permute(0, 2, 3, 1)
out[:, i:i+self.kernel_size, j:j+self.kernel_size, :] += attn_out
return out
class KernelTransformerBlock(nn.Module):
def __init__(self, dim, heads=8, kernel_size=8, stride=4, mlp_ratio=4, drop=0.1):
super(KernelTransformerBlock, self).__init__()
self.norm1 = nn.LayerNorm(dim)
# self.attention = KernelAttention(dim, heads=heads)
# self.attention = nn.MultiheadAttention(dim, heads)
self.attention = SlidingKernelAttention2D(dim, heads=heads,
kernel_size=kernel_size, stride=stride)
self.dropout = nn.Dropout(drop)
self.norm2 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, dim * mlp_ratio),
nn.GELU(),
nn.Dropout(drop),
nn.Linear(dim * mlp_ratio, dim),
nn.Dropout(drop)
)
def forward(self, x):
nor = self.norm1(x)
attn_out = self.attention(nor)
attn_out = self.dropout(attn_out)
x = x + attn_out
nor = self.norm2(x)
mlp_out = self.mlp(nor)
x = x + mlp_out
return x
class KernelTransformerStage(nn.Module):
def __init__(self, dim, num_blocks, heads=8, kernel_size=8, stride=4, mlp_ratio=4, drop=0.1):
super(KernelTransformerStage, self).__init__()
self.blocks = nn.ModuleList([
KernelTransformerBlock(dim, heads, kernel_size, stride, mlp_ratio, drop)
for _ in range(num_blocks)
])
def forward(self, x):
for blk in self.blocks:
x = blk(x)
return x
class KernelTransformer(nn.Module):
def __init__(self, in_channels, emb_size, patch_size, heads, num_classes, struct):
super(KernelTransformer, self).__init__()
self.blocks = nn.ModuleList([
PatchEmbedding2D(in_channels, emb_size, patch_size, permute=False),
KernelTransformerStage(emb_size, struct[0], heads=4, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size, emb_size * 2, 2),
KernelTransformerStage(emb_size * 2, struct[1], heads=8, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size * 2, emb_size * 4, 2),
KernelTransformerStage(emb_size * 4, struct[2], heads=16, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size * 4, emb_size * 8, 1),
KernelTransformerStage(emb_size * 8, struct[3], heads=32, kernel_size=4, stride=2)
])
self.classifier = nn.Sequential(
nn.LayerNorm(emb_size * 8),
nn.Linear(emb_size * 8, num_classes)
)
def forward(self, x):
for blk in self.blocks:
x = blk(x)
x = x.mean(dim=[1,2]) # Global average pooling
return self.classifier(x)
class MaskedKernelTransformer(nn.Module):
def __init__(self, in_channels, emb_size, patch_size, heads, num_classes, struct, mask_ratio=0.1):
super(MaskedKernelTransformer, self).__init__()
self.emb_size = emb_size
self.img_size = 32 # CIFAR-10 image size
self.num_patches = (self.img_size // patch_size) ** 2
self.mask_ratio = mask_ratio
self.blocks = nn.ModuleList([
PatchEmbedding2D(in_channels, emb_size, patch_size, permute=False),
KernelTransformerStage(emb_size, struct[0], heads=4, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size, emb_size * 2, 2),
KernelTransformerStage(emb_size * 2, struct[1], heads=8, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size * 2, emb_size * 4, 2),
KernelTransformerStage(emb_size * 4, struct[2], heads=16, kernel_size=4, stride=2),
PatchEmbedding2D(emb_size * 4, emb_size * 8, 1),
KernelTransformerStage(emb_size * 8, struct[3], heads=32, kernel_size=4, stride=2)
])
self.classifier = nn.Sequential(
nn.LayerNorm(emb_size * 8),
nn.Linear(emb_size * 8, num_classes)
)
# randomly mask some patches
def generate_random_mask(self, ratio):
num_masked_patches = int(self.num_patches * ratio)
mask = torch.ones(self.num_patches)
mask_idx = torch.randperm(self.num_patches)[:num_masked_patches]
mask[mask_idx] = 0
return mask
def forward(self, x, masked = True):
# masked during training, unmasked during testing
applied = False
if masked:
mask = self.generate_random_mask(self.mask_ratio).to(x.device)
mask = mask.view(16, 16)[None, :, :, None]
mask = mask.expand(x.size(0), -1, -1, self.emb_size)
for blk in self.blocks:
x = blk(x)
if isinstance(blk, PatchEmbedding2D) and masked and not applied:
x = x * mask
applied = True
x = x.mean(dim=[1,2])
return self.classifier(x)
if __name__ == '__main__':
from utils import count_parameters
model = KernelTransformer(in_channels=3, emb_size=96, patch_size=2,
heads=8, num_classes=10, struct=(2, 2, 6, 2))
print(model) # print model architecture
print(f"Number of parameters: {count_parameters(model):,}")