Skip to content

Latest commit

 

History

History
66 lines (41 loc) · 2.71 KB

README.md

File metadata and controls

66 lines (41 loc) · 2.71 KB

This code was written as part of the 2023 MSRI "Formalization of Mathematics" workshop hosted in Berkeley California

Formal_Lipschitz

Implementation of Theorem 2.2 of "Metric Embeddings and Lipschitz Extentensions by Assaf Naor" page 5

Link: https://web.math.princeton.edu/~naor/homepage%20files/embeddings_extensions.pdf

Code now integrated in Mathlib4 under :

Mathlib.Topology.MetricSpace.Kuratowski

Mathlib.Analysis.lpSpace

Mathlib.Topology.MetricSpace.Lipschitz

Theorem 2.2.

Suppose $\left(X, d_X\right)$ is a metric space, $A \subseteq X$ and let $f: A \rightarrow \ell_{\infty}(\Gamma)$ a Lipschitz function. Then, there is an

extension $\tilde{f}: X \rightarrow \ell_{\infty}(\Gamma)$ of $f$, i.e. with $\tilde{f}|_A=f$, such that $|\tilde{f}|_{\text {Lip }}=|f|_{\text {Lip }}$.

Proof.

Let $|f|_{\text {Lip }}=L$ and write

$$ f(x)=\left(f_\gamma(x)\right)_{\gamma \in \Gamma}, \text { for } x \in X \text { and } f_\gamma(x) \in \mathbb{R} $$

Then, we see that

$$ |f|_{\text {Lip }}=\sup _{d_X(x, y) \leqslant 1} \sup _{\gamma \in \Gamma}\left|f_\gamma(x)-f_\gamma(y)\right|=\sup _{\gamma \in \Gamma}\left|f_\gamma\right|_{\text {Lip }}, $$

thus each $f_\gamma$ is also $L$-Lipschitz. Thus, it is enough to extend all the $f_\gamma$ isometrically, that is prove our theorem with $\mathbb{R}$ replacing $\ell_{\infty}(\Gamma)$. This will be done in the next important lemma.

Lemma 2.3

(Nonlinear Hahn-Banach theorem). Suppose $\left(X, d_X\right)$ is a metric space, $A \subseteq X$ and let $f: A \rightarrow \mathbb{R}$ a Lipschitz function.

Then, there is an extension $\tilde{f}: X \rightarrow \mathbb{R}$ of $f$, i.e. with $\left.\tilde{f}\right|_A=f$, such that $|\tilde{f}|_{\text {Lip }}=|f|_{\text {Lip }}$

First-direct proof. Call again $L=|f|_{\text {Lip }}$ and define the function $\tilde{f}: X \rightarrow \mathbb{R}$ by the formula

$$ \tilde{f}(x)=\inf _{a \in A}\left\{f(a)+L d_X(x, a)\right\}, \quad x \in X $$

To see that this function satisfies the results, fix an arbitrary $a_0 \in A$. Then, for any $a \in A$ :

$$ f(a)+L d_X(x, a) \geqslant f\left(a_0\right)-L d\left(a, a_0\right)+L d(x, a) \geqslant f\left(a_0\right)-L d\left(x, a_0\right)>-\infty, $$

so $\tilde{f}(x)$ is well-defined. Also, if $x \in A$, the above shows that $\tilde{f}(x)=f(x)$. Finally, for $x, y \in X$ and $\varepsilon>0$, choose $a_x \in A$ such that

$$ \tilde{f}(x) \geqslant f\left(a_x\right)+L d\left(x, a_x\right)-\varepsilon $$

Then,

$$ \tilde{f}(y)-\tilde{f}(x) \leqslant f\left(a_x\right)+L d\left(y, a_x\right)-f\left(a_x\right)-L d\left(x, a_x\right)+\varepsilon \leqslant L d(x, y)+\varepsilon . $$

Thus, we see that $\tilde{f}$ is indeed $L$-Lipschitz.