-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
684 lines (602 loc) · 32.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from __future__ import division
from __future__ import print_function
import json
import itertools
import argparse
import math
import time
import argparse
import pickle
import os
from functools import partial
import numpy as np
import torch
torch.set_printoptions(precision=32)
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.optim import lr_scheduler
from modules import MLPEncoder, MLPDecoder
from utils import get_experiments_folder, get_experiment_name
from utils import load_data, encode_onehot
from utils import maybe_make_logits_symmetric
from utils import nll_gaussian, kl_categorical_uniform, kl_gumbel
from utils import sampling_edge_metrics
from utils import sample_indep_edges
from core.spanning_tree import sample_tree_from_logits
from core.topk import sample_topk_from_logits
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", type=eval, default=True, choices=[True, False],
help="Enables CUDA training.")
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument("--mode", type=str, default="train",
choices=["train", "eval"],
help="Whether to train or evaluate.")
parser.add_argument("--num_iterations", type=int, default=50000,
help="Number of iterations to train.")
parser.add_argument("--eval_every", type=int, default=500,
help="Number of training steps in-between evaluating.")
parser.add_argument("--batch_size", type=int, default=128,
help="Number of samples per batch.")
parser.add_argument("--eval_batch_size", type=int, default=100,
help="Number of samples per batch for eval on validation.")
parser.add_argument("--temp", type=float, default=5.0, help="Temperature.")
parser.add_argument("--lr", type=float, default=0.0003,
help="Initial learning rate.")
parser.add_argument("--lr_decay", type=int, default=200,
help="After how epochs to decay LR by a factor of gamma.")
parser.add_argument("--gamma", type=float, default=0.5,
help="LR decay factor.")
parser.add_argument("--enc_weight_decay", type=float, default=0.0,
help="Weight decay for AdamW.")
parser.add_argument("--dec_weight_decay", type=float, default=0.0,
help="Weight decay for AdamW.")
parser.add_argument("--encoder_hidden", type=int, default=256,
help="Number of hidden units.")
parser.add_argument("--decoder_hidden", type=int, default=256,
help="Number of hidden units.")
parser.add_argument("--num_vertices", type=int, default=10,
help="Number of vertices in the graph.")
parser.add_argument("--encoder_dropout", type=float, default=0.0,
help="Dropout rate (1 - keep probability).")
parser.add_argument("--decoder_dropout", type=float, default=0.0,
help="Dropout rate (1 - keep probability).")
parser.add_argument("--factor", type=eval, default=True,
choices=[True, False],
help="Enables factor graph model.")
parser.add_argument("--suffix", type=str, default="_novar_1skip_10t_1r_graph10",
help="Suffix for training data.")
parser.add_argument("--edge_types", type=int, default=2, choices=[1, 2],
help="The number of edge types to infer. Must be <= 2.")
parser.add_argument("--dims", type=int, default=2,
help="The number of input dimensions.")
parser.add_argument("--timesteps", type=int, default=10,
help="The number of time steps per sample.")
parser.add_argument("--prediction_steps", type=int, default=10, metavar="N",
help="Num steps to predict before re-using teacher forcing.")
parser.add_argument("--num_rounds", type=int, default=1,
help="Num message passing rounds in decoder per timestep.")
parser.add_argument("--skip_first", type=eval, default=False, choices=[True, False],
help="Skip first edge type in decoder, i.e. it represents no-edge.")
parser.add_argument("--var", type=float, default=5e-5, help="Output variance.")
parser.add_argument("--hard", type=eval, default=False, choices=[True, False],
help="Uses discrete samples in training forward pass.")
parser.add_argument("--st", type=eval, default=False, choices=[True, False],
help="Uses discrete samples in training forward pass.")
parser.add_argument("--sst", type=str, default="tree",
choices=["indep", "tree", "topk"],
help="Stochastic Softmax Tricks")
parser.add_argument("--relaxation", type=str, default="exp_family_entropy",
help="Relaxation for SST.")
parser.add_argument("--max_range", type=float, default=np.inf,
help="Max range of logits for spanning tree sst.")
parser.add_argument("--eps_for_finitediff", type=float, default=1e-2,
help="Epsilon for finite difference for topk.")
parser.add_argument("--use_gumbels_for_kl", type=eval, default=True,
choices=[True, False],
help="Whether to compute KL wrt U (gumbels) instead of X.")
parser.add_argument("--use_nvil", type=eval, default=False,
choices=[True, False], help="Whether to use NVIL.")
parser.add_argument("--use_reinforce", type=eval, default=False,
choices=[True, False], help="Whether to use REINFORCE.")
parser.add_argument("--num_samples", type=int, default=1,
help="Num. samples for gradient estimation.")
parser.add_argument("--reinforce_baseline", type=str, default="ema",
choices=["ema", "batch", "multi_sample"],
help="Choice of baseline for REINFORCE.")
parser.add_argument("--ema_for_loss", type=float, default=0.99,
help="EMA coefficient for NVIL or REINFORCE.")
parser.add_argument("--use_cpp_for_sampling", type=eval, default=True,
choices=[True, False],
help=("Whether to use C++ Kruskal's when sampling for "
"spanning tree sst."))
parser.add_argument("--use_cpp_for_edge_metric", type=eval, default=False,
choices=[True, False],
help=("Whether to use C++ Kruskal's when computing edge "
"metrics for spanning tree sst."))
parser.add_argument("--edge_metric_num_samples", type=int, default=1,
help="Num. samples when computing edge metrics.")
parser.add_argument("--log_edge_metric_train", type=eval, default=False,
choices=[True, False],
help="Whether to compute and log edge metrics on train.")
parser.add_argument("--log_edge_metric_val", type=eval, default=True,
choices=[True, False],
help="Whether to compute and log edge metrics on valid.")
parser.add_argument("--eval_edge_metric_bs", type=int, default=10000,
help="Batch size for computing edge metrics during eval.")
parser.add_argument("--symmeterize_logits", type=eval, default=True,
choices=[True, False],
help="Whether to make the encoder output edge symmetric.")
parser.add_argument("--experiments_folder", type=str, default=None,
help=("Name of folder for experiment group."
"Set this for evaluation (mode == 'eval'."))
parser.add_argument("--experiment_name", type=str, default=None,
help="Name of experiment.")
parser.add_argument("--save_best_model", type=eval, default=True,
choices=[True, False],
help="Whether to save the checkpoint for the best model.")
parser.add_argument("--add_timestamp", type=eval, default=True,
choices=[True, False],
help="Whether to add timestamp to experiments folder.")
args = parser.parse_args()
print(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = "cuda" if args.cuda else "cpu"
# Check arguments.
if args.sst != "indep":
assert args.use_gumbels_for_kl
if args.use_nvil or args.use_reinforce:
assert not (args.use_nvil and args.use_reinforce)
assert args.hard
if args.use_reinforce and args.reinforce_baseline == "multi_sample":
assert args.num_samples > 1
if args.mode == "eval":
assert args.experiments_folder is not None
if args.mode == "train":
# Experiments are organized such that there is a main experiments folder
# which contains experiments that share the same training configuration
# (same SST, relaxation, etc...) except for the hyperparameters.
# First, set up main experiments folder.
experiments_folder = (args.experiments_folder if args.experiments_folder
else get_experiments_folder(args))
if not os.path.exists("experiments"):
os.makedirs("experiments")
if not os.path.exists(os.path.join("experiments", experiments_folder)):
os.makedirs(os.path.join("experiments", experiments_folder))
# Set up the folder for specific hyperparameter settings.
experiment_name = get_experiment_name(args)
experiment_folder = os.path.join(
"experiments", experiments_folder, experiment_name)
if not os.path.exists(experiment_folder):
os.makedirs(experiment_folder)
# Save args in experiment folder.
with open(os.path.join(experiment_folder, "train_config.json"), "w") as f:
config = {k: v for (k, v) in vars(args).items()}
json.dump(config, f, indent=2)
# Get ready to save model.
encoder_file = os.path.join(experiment_folder, "encoder.pt")
decoder_file = os.path.join(experiment_folder, "decoder.pt")
log_file = os.path.join(experiment_folder, "log.txt")
log = open(log_file, "w")
# Setup up training, validation, and test data.
train_loader, valid_loader, test_loader, num_train, num_valid, num_test = load_data(
args.batch_size, args.eval_batch_size, args.suffix)
num_complete_batches, leftover = divmod(num_train, args.batch_size)
num_batches_per_epoch = num_complete_batches + bool(leftover)
# Make sure eval batch size divides validation set, since we assume this
# when computing eval metrics.
eval_edge_metric_bs = (args.eval_batch_size if not args.eval_edge_metric_bs
else args.eval_edge_metric_bs)
assert num_valid % args.eval_batch_size == 0
assert num_valid % eval_edge_metric_bs == 0
if args.mode == "eval":
assert num_test % args.eval_batch_size == 0
assert num_test % eval_edge_metric_bs == 0
# Generate off-diagonal interaction graph
off_diag = np.ones([args.num_vertices, args.num_vertices]) - np.eye(args.num_vertices)
rel_rec = np.array(encode_onehot(np.where(off_diag)[0]), dtype=np.float32)
rel_send = np.array(encode_onehot(np.where(off_diag)[1]), dtype=np.float32)
rel_rec = torch.FloatTensor(rel_rec)
rel_send = torch.FloatTensor(rel_send)
encoder = MLPEncoder(args.timesteps * args.dims, args.encoder_hidden,
(args.edge_types if args.sst == "indep" else 1),
args.encoder_dropout, args.factor,
args.use_nvil, num_edges=rel_rec.size(0), n=args.num_vertices,
num_timesteps=args.timesteps, num_dims=args.dims)
decoder = MLPDecoder(n_in_node=args.dims,
edge_types=args.edge_types,
msg_hid=args.decoder_hidden,
msg_out=args.decoder_hidden,
n_hid=args.decoder_hidden,
do_prob=args.decoder_dropout,
skip_first=args.skip_first,
num_rounds=args.num_rounds)
if args.enc_weight_decay > 0.0 or args.dec_weight_decay > 0.0:
print("Using AdamW.")
optimizer = optim.AdamW([
{"params": encoder.parameters(), "weight_decay": args.enc_weight_decay},
{"params": decoder.parameters(), "weight_decay": args.dec_weight_decay}],
lr = args.lr)
else:
print("Using Adam.")
optimizer = optim.Adam(
list(encoder.parameters()) + list(decoder.parameters()), lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay,
gamma=args.gamma)
# Setup sampling function and probability calculation function for tree prior.
if args.sst == "tree":
# Check that the output of the encode is made to be symmetric.
assert args.symmeterize_logits is not None
sample_edges = partial(sample_tree_from_logits, edge_types=args.edge_types,
relaxation=args.relaxation, max_range=args.max_range,
use_cpp=args.use_cpp_for_sampling)
elif args.sst == "topk":
# Check that the output of the encode is made to be symmetric.
assert args.symmeterize_logits is not None
sample_edges = partial(sample_topk_from_logits, k=(args.num_vertices - 1),
edge_types=args.edge_types, relaxation=args.relaxation,
eps=args.eps_for_finitediff)
elif args.sst == "indep":
# sample_edges = gumbel_softmax
sample_edges = partial(
sample_indep_edges, is_edgesymmetric=args.symmeterize_logits)
else:
raise ValueError(f"Stochastic Softmax Trick type {args.sst} is not valid!")
def compute_kl(logits):
if args.sst == "indep" and not args.use_gumbels_for_kl:
probs = F.softmax(logits, dim=-1)
return kl_categorical_uniform(probs, args.num_vertices, args.edge_types)
else:
return kl_gumbel(logits, args.num_vertices)
get_sampling_metrics = partial(
sampling_edge_metrics, sst=args.sst, n=args.num_vertices,
num_samples=args.edge_metric_num_samples,
is_edgesymmetric=args.symmeterize_logits, use_cpp=args.use_cpp_for_edge_metric)
if args.cuda:
encoder.to("cuda")
decoder.to("cuda")
rel_rec = rel_rec.to("cuda")
rel_send = rel_send.to("cuda")
rel_rec = Variable(rel_rec)
rel_send = Variable(rel_send)
def train():
itercount = itertools.count()
num_epochs = math.ceil(args.num_iterations / num_batches_per_epoch)
best_elbo = -np.inf
best_step, best_epoch = 0, 0
# Exponential moving average of negative log-likelihood for
# NVIL and REINFORCE.
loss_nll_ema = 0.0
measurements = {
# Measurements on training set.
"train_steps": [], "nll_train": [],
"acc_train": [], "precision_train": [], "recall_train": [],
"elbo_train":[], "tf_elbo_train": [], "kl_train": [],
"mse_train": [],
# Measurements on validation set.
"val_steps": [], "nll_val": [],
"acc_val": [], "precision_val": [], "recall_val": [],
"elbo_val": [], "kl_val": [], "mse_val": [],
}
encoder.train()
decoder.train()
start_time = time.time()
for epoch in range(num_epochs):
for batch_idx, (data, relations) in enumerate(train_loader):
i = next(itercount)
if args.cuda:
data, relations = data.to("cuda"), relations.to("cuda")
data, relations = Variable(data), Variable(relations)
optimizer.zero_grad()
logits, nvil_baseline = encoder(data, rel_rec, rel_send)
logits = maybe_make_logits_symmetric(logits, args.symmeterize_logits)
edges = []
edge_weights = []
for _ in range(args.num_samples):
# ss stands for single sample.
ss_edges, ss_edge_weights = sample_edges(
logits, tau=args.temp, hard=args.hard, hard_with_grad=args.st)
edges.append(ss_edges)
edge_weights.append(ss_edge_weights)
# Edges and edge_weights are of shape
# (num_samples * bs, (n - 1) * n, edge_types).
edges = torch.cat(edges)
edge_weights = torch.cat(edge_weights)
if args.use_nvil or args.use_reinforce:
edges = edges.detach()
edge_weights = edge_weights.detach()
# Repeat data to account for multiple samples.
data = data.repeat(
args.num_samples, *([1] * len(data.shape[1:])))
output = decoder(data, edges, rel_rec, rel_send, args.prediction_steps)
target = data[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var)
# Reshape to take into account num_samples.
loss_nll = loss_nll.view(args.num_samples, logits.size(0))
# Unsqueeze to take into account num_samples.
loss_kl = compute_kl(logits).unsqueeze(0)
# Make sure all losses are consistently divided by num_vertices.
loss = (loss_nll + loss_kl).sum() / (logits.size(0) * args.num_samples)
measurements["train_steps"].append(i)
if args.log_edge_metric_train:
acc, precision, recall = get_sampling_metrics(logits, relations)
best_idx = np.argmax(precision)
measurements["acc_train"].append(acc[best_idx])
measurements["precision_train"].append(precision[best_idx])
measurements["recall_train"].append(recall[best_idx])
mse_loss = F.mse_loss(output, target).item()
measurements["mse_train"].append(mse_loss)
measurements["nll_train"].append(loss_nll.mean().item())
measurements["kl_train"].append(loss_kl.mean().item())
measurements["elbo_train"].append(-1.0 * loss.item())
# Get decoder output using teacher forcing. We do this to get a
# comparable elbo measurement with evaluation results, since we use
# teacherforcing when evaluating on the validation and test set.
with torch.no_grad():
# Here, tf stands for teacher forcing.
tf_output = decoder(data, edges, rel_rec, rel_send, 1)
tf_nll = nll_gaussian(tf_output, target, args.var)
tf_nll = tf_nll.view(args.num_samples, logits.size(0))
tf_loss = (tf_nll + loss_kl).sum() / (logits.size(0) * args.num_samples)
tf_elbo = -1.0 * tf_loss
measurements["tf_elbo_train"].append(tf_elbo.item())
if args.use_nvil or args.use_reinforce:
# Compute log p with respect to U.
edge_weights = edge_weights.view(args.num_samples, *logits.shape)
if args.use_gumbels_for_kl:
logprob = (
-(edge_weights - logits.unsqueeze(0)) -
torch.exp(-(edge_weights - logits.unsqueeze(0))))
else:
# Compute log p with respect to X. This only makes sense
# when args.sst == 'indep'.
edges = edges.view(args.num_samples, *logits.shape)
logprob = torch.log(torch.sum(
F.softmax(logits, dim=-1).unsqueeze(0) * edges,
axis=-1, keepdim=True))
logprob = logprob.sum(-1).sum(-1)
# Exponential moving average on the loss.
# If ema coeff is 0 then baseline is also 0.
if args.ema_for_loss > 0.0:
loss_nll_ema = (
args.ema_for_loss * loss_nll_ema +
(1.0 - args.ema_for_loss) * loss_nll.mean()).detach()
else:
loss_nll_ema = 0.0
if args.use_nvil:
nvil_baseline = nvil_baseline.unsqueeze(0)
baseline_loss = ((
(loss_nll - loss_nll_ema).detach() - nvil_baseline) ** 2)
nvil_loss = (
loss_nll +
(loss_nll - loss_nll_ema - nvil_baseline).detach() * logprob +
baseline_loss / args.num_vertices
)
nvil_loss = (nvil_loss + loss_kl).sum() / (logits.size(0) * args.num_samples)
nvil_loss.backward()
optimizer.step()
else: # REINFORCE
# Compute the baseline.
if args.reinforce_baseline == "ema":
baseline = loss_nll_ema
elif args.reinforce_baseline == "batch":
# Use the mean of the whole batch.
# Compute mean over each sample separately.
baseline = loss_nll.mean()
elif args.reinforce_baseline == "multi_sample":
baseline = loss_nll.mean(0).unsqueeze(0) # (1, bs)
reinforce_loss = loss_nll + (loss_nll - baseline).detach() * logprob
# Divide by (num_samples - 1) in the multi-sample case for
# an unbiased estimate.
reinforce_loss = reinforce_loss.sum(0) / (
(args.num_samples - 1) if args.reinforce_baseline == "multi_sample"
else args.num_samples
)
reinforce_loss = (reinforce_loss + loss_kl).sum() / logits.size(0)
reinforce_loss.backward()
optimizer.step()
else:
loss.backward()
optimizer.step()
# Evaluate every args.eval_every steps.
if i % args.eval_every == 0:
train_time = time.time() - start_time
start_time = time.time()
eval_start_time = time.time()
measurements["val_steps"].append(i)
nlls, mses = [], []
accs, precisions, recalls = [], [], []
kls, elbos = [], []
logits_list_for_eval, relations_list_for_eval = [], []
encoder.eval()
decoder.eval()
for batch_idx, (data, relations) in enumerate(valid_loader):
if args.cuda:
data, relations = data.to("cuda"), relations.to("cuda")
data, relations = Variable(data), Variable(relations)
logits, baseline = encoder(data, rel_rec, rel_send)
logits = maybe_make_logits_symmetric(logits, args.symmeterize_logits)
edges, _ = sample_edges(logits, tau=args.temp, hard=True)
# validation output uses teacher forcing.
output = decoder(data, edges, rel_rec, rel_send, 1)
target = data[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var).mean()
loss_kl = compute_kl(logits).mean()
# Since computing the edge metrics can be done with a
# much bigger batch size the eval batch size (for obtaining
# encoder and decoder outputs), we might want to collect
# the encoder output logits and compute edge metics
# with a bigger batch size outside the eval loop.
if args.log_edge_metric_val and eval_edge_metric_bs == args.eval_batch_size:
acc, precision, recall = get_sampling_metrics(logits, relations)
accs.append(acc)
precisions.append(precision)
recalls.append(recall)
elif args.log_edge_metric_val and eval_edge_metric_bs != args.eval_batch_size:
logits_list_for_eval.append(logits.to("cpu").detach().numpy())
relations_list_for_eval.append(relations.to("cpu").detach().numpy())
mses.append(F.mse_loss(output, target).item())
nlls.append(loss_nll.item())
kls.append(loss_kl.item())
elbos.append(-1.0 * (loss_nll + loss_kl).item())
# Compute edge metrics with a bigger batch size separately
# from the eval loop. For spanning tree SST, doing this is
# faster only when the batched pytorch version of Kruskal's is
# used. The C++ Kruskal's is faster for small batch sizes
# (for example, when evaluating a bigger graph where we can
# only fit a small batch size for the encoder and decoder.)
if args.log_edge_metric_val and eval_edge_metric_bs != args.eval_batch_size:
logits_for_eval = torch.tensor(np.vstack(logits_list_for_eval)).to(device)
relations_for_eval = torch.tensor(np.vstack(relations_list_for_eval)).to(device)
for sub_idx in range(int(logits_for_eval.size(0) / eval_edge_metric_bs)):
logits_ = logits_for_eval[
sub_idx * eval_edge_metric_bs: (sub_idx + 1) * eval_edge_metric_bs]
relations_ = relations_for_eval[
sub_idx * eval_edge_metric_bs: (sub_idx + 1) * eval_edge_metric_bs]
acc, precision, recall = get_sampling_metrics(logits_, relations_)
accs.append(acc)
precisions.append(precision)
recalls.append(recall)
measurements["nll_val"].append(np.mean(nlls))
measurements["kl_val"].append(np.mean(kls))
measurements["elbo_val"].append(np.mean(elbos))
measurements["mse_val"].append(np.mean(mses))
accs = np.mean(accs, axis=0)
precisions = np.mean(precisions, axis=0)
recalls = np.mean(recalls, axis=0)
best_idx = np.argmax(precisions)
measurements["acc_val"].append(accs[best_idx])
measurements["precision_val"].append(precisions[best_idx])
measurements["recall_val"].append(recalls[best_idx])
eval_time = time.time() - eval_start_time
print(
"{}/{} iterations in {:0.2f}s; ".format(
i, args.num_iterations, train_time) +
"Eval in {:0.2f} sec".format(eval_time), flush=True)
measurements_str = (
"Iteration {} (Epoch {}) ".format(i, epoch) +
"nll_train: {:.10f} ".format(measurements["nll_train"][-1]) +
"kl_train: {:.10f} ".format(measurements["kl_train"][-1]) +
"elbo_train: {:.10f} ".format(measurements["elbo_train"][-1]) +
"tf_elbo_train: {:.10f} ".format(measurements["tf_elbo_train"][-1]) +
"mse_train: {:.10f} ".format(measurements["mse_train"][-1]) +
("acc_train: {:.10f} ".format(measurements["acc_train"][-1]) +
"precision_train: {:.10f} ".format(measurements["precision_train"][-1]) +
"recall_train: {:.10f} ".format(measurements["recall_train"][-1])
if args.log_edge_metric_train else "") +
"nll_val: {:.10f} ".format(measurements["nll_val"][-1]) +
"kl_val: {:.10f} ".format(measurements["kl_val"][-1]) +
"elbo_val: {:.10f} ".format(measurements["elbo_val"][-1]) +
"mse_val: {:.10f} ".format(measurements["mse_val"][-1]) +
("acc_val: {:.10f} ".format(measurements["acc_val"][-1]) +
"precision_val: {:.10f} ".format(measurements["precision_val"][-1]) +
"recall_val: {:.10f} ".format(measurements["recall_val"][-1])
if args.log_edge_metric_val else "")
)
print(measurements_str)
print(measurements_str, file=log)
log.flush()
if args.save_best_model and measurements["elbo_val"][-1] > best_elbo:
torch.save(encoder.state_dict(), encoder_file)
torch.save(decoder.state_dict(), decoder_file)
print("Best model so far, saving...")
if measurements["elbo_val"][-1] > best_elbo:
best_elbo = measurements["elbo_val"][-1]
best_step, best_epoch = i, epoch
encoder.train()
decoder.train()
scheduler.step()
return measurements, best_elbo, best_step, best_epoch
def test():
measurements = {
"valid":{
"elbo": [], "acc": [], "precision": [], "recall": []},
"test":{
"elbo": [], "acc": [], "precision": [], "recall": []}
}
idx = 0
for exp in os.listdir(os.path.join("experiments", args.experiments_folder)):
trial_path = os.path.join("experiments", args.experiments_folder, exp)
if not os.path.os.path.isdir(trial_path):
continue
if not os.path.exists(os.path.join(trial_path, "train_and_val_measurements.pkl")):
continue
start = time.time()
try:
encoder_file = os.path.join(trial_path, "encoder.pt")
encoder.load_state_dict(
torch.load(encoder_file, map_location=torch.device(device)))
decoder_file = os.path.join(trial_path, "decoder.pt")
decoder.load_state_dict(
torch.load(decoder_file, map_location=torch.device(device)))
except:
continue
for dataset in ["valid", "test"]:
dataloader = valid_loader if dataset == "valid" else test_loader
elbos = []
logits_list = []
relations_list = []
accs_list, precisions_list, recalls_list = [], [], []
for batch_idx, (data, relations) in enumerate(dataloader):
data = data[:, :, :args.timesteps, :]
if args.cuda:
data, relations = data.to("cuda"), relations.to("cuda")
data, relations = Variable(data), Variable(relations)
logits, _ = encoder(data, rel_rec, rel_send)
logits = maybe_make_logits_symmetric(logits, args.symmeterize_logits)
edges, _ = sample_edges(logits, tau=args.temp, hard=True)
# validation output uses teacher forcing.
output = decoder(data, edges, rel_rec, rel_send, 1)
target = data[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var).mean()
loss_kl = compute_kl(logits).mean()
elbos.append(-1.0 * (loss_nll + loss_kl).item())
logits_list.append(logits.to("cpu").detach().numpy())
relations_list.append(relations.to("cpu").detach().numpy())
logits_for_eval = torch.tensor(np.vstack(logits_list)).to(device)
relations_for_eval = torch.tensor(np.vstack(relations_list)).to(device)
for sub_idx in range(int(logits_for_eval.size(0) / eval_edge_metric_bs)):
logits_ = logits_for_eval[
sub_idx * eval_edge_metric_bs: (sub_idx + 1) * eval_edge_metric_bs]
relations_ = relations_for_eval[
sub_idx * eval_edge_metric_bs: (sub_idx + 1) * eval_edge_metric_bs]
accs, precisions, recalls = get_sampling_metrics(logits_, relations_)
accs_list.append(accs)
precisions_list.append(precisions)
recalls_list.append(recalls)
print(f"{dataset} trial {idx} for {args.experiments_folder} took {time.time() - start}s.")
measurements[dataset]["elbo"].append(np.mean(elbos))
accs = np.mean(accs_list, axis=0)
precisions = np.mean(precisions_list, axis=0)
recalls = np.mean(recalls_list, axis=0)
best_idx = np.argmax(precisions)
measurements[dataset]["acc"].append(accs[best_idx])
measurements[dataset]["precision"].append(precisions[best_idx])
measurements[dataset]["recall"].append(recalls[best_idx])
idx += 1
all_measurements = {}
for dataset in measurements:
all_measurements[dataset] = {}
for k, v in measurements[dataset].items():
all_measurements[dataset][k] = np.array(v)
return all_measurements
if args.mode == "train":
# Train model
train_and_val_measurements, best_elbo, best_step, best_epoch = train()
print("Optimization Finished!")
print("Best Epoch: {:04d}; best step: {:04d}".format(best_epoch, best_step))
print("Best Epoch: {:04d}; best step: {:04d}".format(best_epoch, best_step), file=log)
log.flush()
# Save measurements.
meas_fname = "train_and_val_measurements.pkl"
with open(os.path.join(experiment_folder, meas_fname), "wb") as f:
pickle.dump(train_and_val_measurements, f)
else:
all_measurements = test()
import pdb;pdb.set_trace()
print("Saving data.")
data_path = os.path.join(
"experiments", args.experiments_folder, "data_for_bootstrapping.pkl")
with open(data_path, "wb") as f:
pickle.dump(all_measurements, f)