forked from cchen156/Learning-to-See-in-the-Dark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasetLoader.py
43 lines (32 loc) · 1.25 KB
/
datasetLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
from skimage import io
from torch.utils.data import Dataset, DataLoader
# from torchvision.transforms import transforms
# from torch.autograd import Variable
# import torch.nn.functional as F
def get_png(directory_name):
correct_files = []
for file in os.listdir(directory_name):
if file.endswith(".png"):
correct_files.append(file)
return correct_files
class SeeingIntTheDarkDataset(Dataset):
def __init__(self, x_dir, y_dir, transform=None):
self.x_dir = x_dir
# self.x_dir_files = sorted(os.listdir(x_dir))[1:]
self.x_dir_files = get_png(x_dir)
self.y_dir = y_dir
# self.y_dir_files = sorted(os.listdir(y_dir))[1:]
self.y_dir_files = get_png(y_dir)
self.transform = transform
def __len__(self):
return len(self.x_dir_files)
def __getitem__(self, idx):
inp_img_name = os.path.join(self.x_dir, self.x_dir_files[idx])
out_img_name = os.path.join(self.y_dir, self.y_dir_files[idx])
in_image = io.imread(inp_img_name)
out_image = io.imread(out_img_name)
if self.transform:
in_image = self.transform(in_image)
out_image = self.transform(out_image)
return [in_image, out_image]