This repository was archived by the owner on Jan 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy path04_word2vec_visualize.py
182 lines (152 loc) · 7.86 KB
/
04_word2vec_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
""" word2vec skip-gram model with NCE loss and
code to visualize the embeddings on TensorBoard
CS 20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
Chip Huyen ([email protected])
Lecture 04
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
from tensorflow.contrib.tensorboard.plugins import projector
import tensorflow as tf
import utils
import word2vec_utils
# Model hyperparameters
VOCAB_SIZE = 50000
BATCH_SIZE = 128
EMBED_SIZE = 128 # dimension of the word embedding vectors
SKIP_WINDOW = 1 # the context window
NUM_SAMPLED = 64 # number of negative examples to sample
LEARNING_RATE = 1.0
NUM_TRAIN_STEPS = 100000
VISUAL_FLD = 'visualization'
SKIP_STEP = 5000
# Parameters for downloading data
DOWNLOAD_URL = 'http://mattmahoney.net/dc/text8.zip'
EXPECTED_BYTES = 31344016
NUM_VISUALIZE = 3000 # number of tokens to visualize
class SkipGramModel:
""" Build the graph for word2vec model """
def __init__(self, dataset, vocab_size, embed_size, batch_size, num_sampled, learning_rate):
self.vocab_size = vocab_size
self.embed_size = embed_size
self.batch_size = batch_size
self.num_sampled = num_sampled
self.lr = learning_rate
self.global_step = tf.get_variable('global_step', initializer=tf.constant(0), trainable=False)
self.skip_step = SKIP_STEP
self.dataset = dataset
def _import_data(self):
""" Step 1: import data
"""
with tf.name_scope('data'):
self.iterator = self.dataset.make_initializable_iterator()
self.center_words, self.target_words = self.iterator.get_next()
def _create_embedding(self):
""" Step 2 + 3: define weights and embedding lookup.
In word2vec, it's actually the weights that we care about
"""
with tf.name_scope('embed'):
self.embed_matrix = tf.get_variable('embed_matrix',
shape=[self.vocab_size, self.embed_size],
initializer=tf.random_uniform_initializer())
self.embed = tf.nn.embedding_lookup(self.embed_matrix, self.center_words, name='embedding')
def _create_loss(self):
""" Step 4: define the loss function """
with tf.name_scope('loss'):
# construct variables for NCE loss
nce_weight = tf.get_variable('nce_weight',
shape=[self.vocab_size, self.embed_size],
initializer=tf.truncated_normal_initializer(stddev=1.0 / (self.embed_size ** 0.5)))
nce_bias = tf.get_variable('nce_bias', initializer=tf.zeros([VOCAB_SIZE]))
# define loss function to be NCE loss function
self.loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weight,
biases=nce_bias,
labels=self.target_words,
inputs=self.embed,
num_sampled=self.num_sampled,
num_classes=self.vocab_size), name='loss')
def _create_optimizer(self):
""" Step 5: define optimizer """
self.optimizer = tf.train.GradientDescentOptimizer(self.lr).minimize(self.loss,
global_step=self.global_step)
def _create_summaries(self):
with tf.name_scope('summaries'):
tf.summary.scalar('loss', self.loss)
tf.summary.histogram('histogram loss', self.loss)
# because you have several summaries, we should merge them all
# into one op to make it easier to manage
self.summary_op = tf.summary.merge_all()
def build_graph(self):
""" Build the graph for our model """
self._import_data()
self._create_embedding()
self._create_loss()
self._create_optimizer()
self._create_summaries()
def train(self, num_train_steps):
saver = tf.train.Saver() # defaults to saving all variables - in this case embed_matrix, nce_weight, nce_bias
initial_step = 0
utils.safe_mkdir('checkpoints')
with tf.Session() as sess:
sess.run(self.iterator.initializer)
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))
# if that checkpoint exists, restore from checkpoint
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
total_loss = 0.0 # we use this to calculate late average loss in the last SKIP_STEP steps
writer = tf.summary.FileWriter('graphs/word2vec/lr' + str(self.lr), sess.graph)
initial_step = self.global_step.eval()
for index in range(initial_step, initial_step + num_train_steps):
try:
loss_batch, _, summary = sess.run([self.loss, self.optimizer, self.summary_op])
writer.add_summary(summary, global_step=index)
total_loss += loss_batch
if (index + 1) % self.skip_step == 0:
print('Average loss at step {}: {:5.1f}'.format(index, total_loss / self.skip_step))
total_loss = 0.0
saver.save(sess, 'checkpoints/skip-gram', index)
except tf.errors.OutOfRangeError:
sess.run(self.iterator.initializer)
writer.close()
def visualize(self, visual_fld, num_visualize):
""" run "'tensorboard --logdir='visualization'" to see the embeddings """
# create the list of num_variable most common words to visualize
word2vec_utils.most_common_words(visual_fld, num_visualize)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))
# if that checkpoint exists, restore from checkpoint
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
final_embed_matrix = sess.run(self.embed_matrix)
# you have to store embeddings in a new variable
embedding_var = tf.Variable(final_embed_matrix[:num_visualize], name='embedding')
sess.run(embedding_var.initializer)
config = projector.ProjectorConfig()
summary_writer = tf.summary.FileWriter(visual_fld)
# add embedding to the config file
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
# link this tensor to its metadata file, in this case the first NUM_VISUALIZE words of vocab
embedding.metadata_path = 'vocab_' + str(num_visualize) + '.tsv'
# saves a configuration file that TensorBoard will read during startup.
projector.visualize_embeddings(summary_writer, config)
saver_embed = tf.train.Saver([embedding_var])
saver_embed.save(sess, os.path.join(visual_fld, 'model.ckpt'), 1)
def gen():
yield from word2vec_utils.batch_gen(DOWNLOAD_URL, EXPECTED_BYTES, VOCAB_SIZE,
BATCH_SIZE, SKIP_WINDOW, VISUAL_FLD)
def main():
dataset = tf.data.Dataset.from_generator(gen,
(tf.int32, tf.int32),
(tf.TensorShape([BATCH_SIZE]), tf.TensorShape([BATCH_SIZE, 1])))
model = SkipGramModel(dataset, VOCAB_SIZE, EMBED_SIZE, BATCH_SIZE, NUM_SAMPLED, LEARNING_RATE)
model.build_graph()
model.train(NUM_TRAIN_STEPS)
model.visualize(VISUAL_FLD, NUM_VISUALIZE)
if __name__ == '__main__':
main()