This repository was archived by the owner on Jan 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy path02_variables.py
71 lines (61 loc) · 2.28 KB
/
02_variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
""" Variable exmaples
Created by Chip Huyen ([email protected])
CS20: "TensorFlow for Deep Learning Research"
cs20.stanford.edu
Lecture 02
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import numpy as np
import tensorflow as tf
# Example 1: creating variables
s = tf.Variable(2, name='scalar')
m = tf.Variable([[0, 1], [2, 3]], name='matrix')
W = tf.Variable(tf.zeros([784,10]), name='big_matrix')
V = tf.Variable(tf.truncated_normal([784, 10]), name='normal_matrix')
s = tf.get_variable('scalar', initializer=tf.constant(2))
m = tf.get_variable('matrix', initializer=tf.constant([[0, 1], [2, 3]]))
W = tf.get_variable('big_matrix', shape=(784, 10), initializer=tf.zeros_initializer())
V = tf.get_variable('normal_matrix', shape=(784, 10), initializer=tf.truncated_normal_initializer())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(V.eval())
# Example 2: assigning values to variables
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
sess.run(W.initializer)
print(sess.run(W)) # >> 10
W = tf.Variable(10)
assign_op = W.assign(100)
with tf.Session() as sess:
sess.run(assign_op)
print(W.eval()) # >> 100
# create a variable whose original value is 2
a = tf.get_variable('scalar', initializer=tf.constant(2))
a_times_two = a.assign(a * 2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(a_times_two) # >> 4
sess.run(a_times_two) # >> 8
sess.run(a_times_two) # >> 16
W = tf.Variable(10)
with tf.Session() as sess:
sess.run(W.initializer)
print(sess.run(W.assign_add(10))) # >> 20
print(sess.run(W.assign_sub(2))) # >> 18
# Example 3: Each session has its own copy of variable
W = tf.Variable(10)
sess1 = tf.Session()
sess2 = tf.Session()
sess1.run(W.initializer)
sess2.run(W.initializer)
print(sess1.run(W.assign_add(10))) # >> 20
print(sess2.run(W.assign_sub(2))) # >> 8
print(sess1.run(W.assign_add(100))) # >> 120
print(sess2.run(W.assign_sub(50))) # >> -42
sess1.close()
sess2.close()
# Example 4: create a variable with the initial value depending on another variable
W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(W * 2)