forked from jkjung-avt/tensorrt_demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_yolo.py
145 lines (117 loc) · 4.94 KB
/
eval_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""eval_yolo.py
This script is for evaluating mAP (accuracy) of YOLO models.
"""
import os
import sys
import json
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from progressbar import progressbar
from utils.yolo_with_plugins import TrtYOLO
from utils.yolo_classes import yolo_cls_to_ssd
HOME = os.environ['HOME']
VAL_IMGS_DIR = HOME + '/data/coco/images/val2017'
VAL_ANNOTATIONS = HOME + '/data/coco/annotations/instances_val2017.json'
def parse_args():
"""Parse input arguments."""
desc = 'Evaluate mAP of YOLO model'
parser = argparse.ArgumentParser(description=desc)
parser.add_argument(
'--imgs_dir', type=str, default=VAL_IMGS_DIR,
help='directory of validation images [%s]' % VAL_IMGS_DIR)
parser.add_argument(
'--annotations', type=str, default=VAL_ANNOTATIONS,
help='groundtruth annotations [%s]' % VAL_ANNOTATIONS)
parser.add_argument(
'--non_coco', action='store_true',
help='don\'t do coco class translation [False]')
parser.add_argument(
'-c', '--category_num', type=int, default=80,
help='number of object categories [80]')
parser.add_argument(
'-m', '--model', type=str, required=True,
help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-'
'[{dimension}], where dimension could be a single '
'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)'))
parser.add_argument(
'-l', '--letter_box', action='store_true',
help='inference with letterboxed image [False]')
args = parser.parse_args()
return args
def check_args(args):
"""Check and make sure command-line arguments are valid."""
if not os.path.isdir(args.imgs_dir):
sys.exit('%s is not a valid directory' % args.imgs_dir)
if not os.path.isfile(args.annotations):
sys.exit('%s is not a valid file' % args.annotations)
def parse_annotations(filename):
import json
annotations = {}
with open(filename, 'r') as f:
annotations = json.load(f)
img_name_to_img_id = {}
for image in annotations["images"]:
file_name = image["file_name"]
img_name_to_img_id[file_name] = image["id"]
return img_name_to_img_id
def generate_results(trt_yolo, imgs_dir, jpgs, results_file, non_coco, annotations):
"""Run detection on each jpg and write results to file."""
results = []
img_name_to_img_id = parse_annotations(annotations)
# for jpg in progressbar(jpgs):
for jpg in jpgs:
img = cv2.imread(os.path.join(imgs_dir, jpg))
# image_id = int(jpg.split('.')[0].split('_')[-1])
image_id = img_name_to_img_id[jpg]
# boxes, confs, clss = trt_yolo.detect(img, conf_th=0.35)
# for box, conf, cls in zip(boxes, confs, clss):
# x = float(box[0])
# y = float(box[1])
# w = float(box[2] - box[0] + 1)
# h = float(box[3] - box[1] + 1)
# cls = int(cls)
# cls = cls if non_coco else yolo_cls_to_ssd[cls]
# if cls == 1:
# results.append({'image_id': image_id,
# # 'category_id': cls,
# 'category_id': 0,
# 'bbox': [x, y, w, h],
# 'score': float(conf)})
boxes, confs = trt_yolo.detect(img, conf_th=0.35)
for box, conf in zip(boxes, confs):
results.append({'image_id': image_id,
'category_id': 0, # only person
'bbox': box,
'score': float(conf)})
# print(results)
# with open(results_file, 'w') as f:
# f.write(json.dumps(results, indent=4))
return results
def main():
args = parse_args()
check_args(args)
if args.category_num <= 0:
raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
if not os.path.isfile('yolo/%s.trt' % args.model):
raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)
results_file = 'yolo/results_%s.json' % args.model
trt_yolo = TrtYOLO(args.model, args.category_num, args.letter_box)
jpgs = [j for j in os.listdir(args.imgs_dir) if j.endswith('.jpg')]
results = generate_results(trt_yolo, args.imgs_dir, jpgs, results_file,
non_coco=args.non_coco, annotations=args.annotations)
# Run COCO mAP evaluation
# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO(args.annotations)
# cocoDt = cocoGt.loadRes(results_file)
cocoDt = cocoGt.loadRes(results)
imgIds = sorted(cocoGt.getImgIds())
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if __name__ == '__main__':
main()