-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlpha_power.py
206 lines (157 loc) · 7.02 KB
/
Alpha_power.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 25 11:59:15 2018
@author: micha
"""
""" X-series core voltage ranges from 1.55 to 1.8 volts
X-series inclues the: i7-7740X,i7-7800X,i7-7820X,i9-7900X,i9-7920X
static and dynamic power consumption found here https://www.techspot.com/review/1442-intel-kaby-lake-x/page4.html
"""
"""All of the values generated are factors, not absolute values so if you get
a power consumption of 2 this means it is 2 * (original power consumption)
"""
import math
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from IPython import get_ipython
import itertools
from mpl_toolkits.mplot3d import Axes3D
#length of the pipeline which includes all stages
def pipe_line_len(base_voltage, threshold_voltage, voltage, base_length, alpha):
length = base_length * ((pow((base_voltage - threshold_voltage), alpha) * voltage)
/ (pow((voltage - threshold_voltage), alpha) * base_voltage))
return length
# number of additional pipeline stages needed
def num_of_pipe_stages(voltage, alpha, base_voltage, threshold_voltage):
n = ((voltage * pow((base_voltage - threshold_voltage), alpha)) / (
base_voltage * pow(voltage - threshold_voltage, alpha))) - 1
return n
def max_frequency(voltage, threshold_voltage, alpha):
max_freq = pow((voltage - threshold_voltage), alpha) / voltage
return max_freq
def alpha_power(dyn_power_base, voltage, base_voltage, frequency, stat_pwr_base, n, dyn_pwr_latch, stat_pwr_latch):
a_pwr = (dyn_power_base * ((pow(voltage, 2)) / (pow(base_voltage, 2))) * frequency)
+ ((voltage / base_voltage) * stat_pwr_base) + (n * (((pow(voltage, 2) / pow(base_voltage, 2)) * frequency * dyn_pwr_latch)
+ ((voltage / base_voltage) * stat_pwr_latch)))
return a_pwr
base_length = 1
base_voltage = 1.8
tbv = base_voltage
bv_list = []
voltage = 1.7
tv = voltage
v_list = []
threshold_voltage = 0.2 # has to be lower then voltage
ttv = threshold_voltage
tv_list = []
alpha = 1.3 # can vary
# base pwr ratio = 888/323 with 888 being dynamic and 323 being static
# This was the average across the x series chips
dyn_pwr_base = 888/(888+323)
print(dyn_pwr_base)
stat_pwr_base = 323/(888+323)
dyn_pwr_latch = 0.9
stat_pwr_latch = 0.1
n = 1.0
frequency =1.0
freq_list = []
p_length = []
stage_num = []
a_pwr = []
freq_list1 =[]
p_length1 = []
stage_num1 = []
a_pwr1 = []
freq_list2 =[]
p_length2 = []
stage_num2 = []
a_pwr2 = []
v_list = np.linspace(1,voltage,25,endpoint = False)
tv_list = np.linspace(threshold_voltage,0.99,25,endpoint = False)
X =[]
Y =[]
n =[]
for x in itertools.product(v_list,tv_list):
X.append(x[0])
Y.append(x[1])
n.append(num_of_pipe_stages(x[0],alpha,base_voltage,x[1]))
X, Y = np.meshgrid(X, Y)
p_length = (pipe_line_len(base_voltage, Y, X, base_length, alpha))
freq_list = (max_frequency(X,Y,alpha))
stage_num = (num_of_pipe_stages(X,alpha,base_voltage,Y))
n = np.meshgrid(n)
#print(n)
a_pwr = (alpha_power(dyn_pwr_base, X, base_voltage, frequency, stat_pwr_base, stage_num, dyn_pwr_latch, stat_pwr_latch))
p_len_xmin, p_len_ymin = np.unravel_index(np.argmin(p_length), p_length.shape)
p_len_xmax, p_len_ymax = np.unravel_index(np.argmax(p_length), p_length.shape)
p_len_mi = (X[p_len_xmin,p_len_ymin], Y[p_len_xmin,p_len_ymin], p_length.min(),'Minimum Value for Pipeline length')
p_len_ma = (X[p_len_xmax, p_len_ymax], Y[p_len_xmax, p_len_ymax], p_length.max(),'Maximum Value for Pipeline length')
print(p_len_mi,'\n',p_len_ma,'\n')
a_pwr_xmin, a_pwr_ymin = np.unravel_index(np.argmin(a_pwr), a_pwr.shape)
a_pwr_xmax, a_pwr_ymax = np.unravel_index(np.argmax(a_pwr), a_pwr.shape)
a_pwr_mi = (X[a_pwr_xmin,a_pwr_ymin], Y[a_pwr_xmin,a_pwr_ymin], a_pwr.min(),'Minimum Value for Power Consumption')
a_pwr_ma = (X[a_pwr_xmax, a_pwr_ymax], Y[a_pwr_xmax, a_pwr_ymax], a_pwr.max(),'Maximum Value for Power Consumption')
print(a_pwr_mi,'\n',a_pwr_ma,'\n')
freq_xmin, freq_ymin = np.unravel_index(np.argmin(freq_list), freq_list.shape)
freq_xmax, freq_ymax = np.unravel_index(np.argmax(freq_list), freq_list.shape)
freq_mi = (X[freq_xmin,freq_ymin], Y[freq_xmin,freq_ymin], freq_list.min(),'Minimum Value for Frequency')
freq_ma = (X[freq_xmax, freq_ymax], Y[freq_xmax, freq_ymax], freq_list.max(),'Maximum Value for Frequency')
print(freq_mi,'\n',freq_ma,'\n')
stage_num_xmin, stage_num_ymin = np.unravel_index(np.argmin(stage_num), stage_num.shape)
stage_num_xmax, stage_num_ymax = np.unravel_index(np.argmax(stage_num), stage_num.shape)
stage_num_mi = (X[stage_num_xmin,stage_num_ymin], Y[stage_num_xmin,stage_num_ymin], stage_num.min(),'Minimum Value for Number of stages')
stage_num_ma = (X[stage_num_xmax, stage_num_ymax], Y[stage_num_xmax, stage_num_ymax], stage_num.max(),'Maximum Value for Number of stages')
print(stage_num_mi,'\n',stage_num_ma,'\n')
# frequency plots
fig = plt.figure()
fig.set_size_inches(18.5, 10.5, forward=True)
ax = fig.add_subplot(2, 2, 1, projection='3d')
# Plot the surface.
surf = ax.plot_surface(X, Y, freq_list, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel('Voltage', fontsize=10)
ax.set_ylabel('Threshold Voltage', fontsize=10)
ax.set_zlabel('Frequency', fontsize=10)
ax.set_title('Frequency')
### Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
# alpha power plots
ax = fig.add_subplot(2, 2, 2, projection='3d')
# Plot the surface.
surf = ax.plot_surface(X, stage_num, a_pwr, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel('Voltage', fontsize=10)
ax.set_ylabel('Pipeline depth factor', fontsize=10)
ax.set_zlabel('Alpha Power', fontsize=10)
ax.set_title('Power Consumption')
### Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
# Stage number plots
ax = fig.add_subplot(2, 2, 3, projection='3d')
# Plot the surface.
surf = ax.plot_surface(X, Y, stage_num, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel('Voltage', fontsize=10)
ax.set_ylabel('Threshold Voltage', fontsize=10)
ax.set_zlabel('Pipeline depth Factor', fontsize=10)
ax.set_title('Pipeline depth Factor')
### Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
# Pipeline length plots
ax = fig.add_subplot(2, 2, 4, projection='3d')
# Plot the surface.
surf = ax.plot_surface(X, Y, p_length, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel('Voltage', fontsize=10)
ax.set_ylabel('Threshold Voltage', fontsize=10)
ax.set_zlabel('Pipeline delay factor', fontsize=10)
ax.set_title('Pipeline delay factor')
### Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
fig.tight_layout()