|
| 1 | +#!/usr/bin/evn python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +# Copyright (c) 2017 - zihao.chen <[email protected]> |
| 4 | +''' |
| 5 | +Author: zihao.chen |
| 6 | +Create Date: 2018-04-08 |
| 7 | +Modify Date: 2018-04-08 |
| 8 | +descirption: "" |
| 9 | +''' |
| 10 | +import torch |
| 11 | +from torch import nn |
| 12 | +from torch import optim |
| 13 | +from torch.autograd import Variable |
| 14 | +import numpy as np |
| 15 | +import sys |
| 16 | +import cv2 |
| 17 | +import os |
| 18 | +import pickle |
| 19 | +from forecaster import Forecaster |
| 20 | +from encoder import Encoder |
| 21 | +# sys.path.append('/home/meteo/zihao.chen/model_service/utils') |
| 22 | +from data_transfrom import decode_radar_code, imgmap_tonumpy, encode_squs_code, imgmaps_tonumpy |
| 23 | + |
| 24 | +input_num_seqs = 10 |
| 25 | +output_num_seqs = 10 |
| 26 | +hidden_size = 3 |
| 27 | +input_channels_img = 1 |
| 28 | +output_channels_img = 1 |
| 29 | +size_image = 240 |
| 30 | +max_epoch = 12 |
| 31 | +cuda_flag = False |
| 32 | +kernel_size = 3 |
| 33 | +batch_size = 16 |
| 34 | + |
| 35 | + |
| 36 | +def train_by_stype(model_e, model_f, loss_e, loss_f, optimizer_e, optimizer_f, x_val, y_val): |
| 37 | + model_e.init_h0() |
| 38 | + for time in xrange(model_e.num_seqs): |
| 39 | + h_next_e = model_e(x_val[time]) |
| 40 | + |
| 41 | + all_pre_data = [] |
| 42 | + # print type(model_e) |
| 43 | + # print type(model_f) |
| 44 | + model_f.set_h0(model_e) |
| 45 | + |
| 46 | + for time in xrange(model_e.num_seqs): |
| 47 | + pre_data, h_next = model_f(None) |
| 48 | + # print h_next.size() |
| 49 | + all_pre_data.append(pre_data) |
| 50 | + |
| 51 | + # fx = model_f.forward(x_val) |
| 52 | + output_f = 0 |
| 53 | + # print all_pre_data[0].requires_grad |
| 54 | + # print y_val[0].requires_grad |
| 55 | + optimizer_f.zero_grad() |
| 56 | + for pre_id in range(len(all_pre_data)): |
| 57 | + # print all_pre_data[pre_id].dtype() |
| 58 | + output_f += loss_f.forward(all_pre_data[pre_id], y_val[pre_id]) |
| 59 | + |
| 60 | + output_f.backward(retain_graph=True) |
| 61 | + optimizer_f.step() |
| 62 | + all_e_rnn_h = [model_e.rnn3_3_h, model_e.rnn3_2_h, model_e.rnn3_1_h, model_e.rnn2_3_h, model_e.rnn2_2_h, |
| 63 | + model_e.rnn2_1_h, model_e.rnn1_2_h, model_e.rnn1_1_h] |
| 64 | + |
| 65 | + all_f_rnn_h = [model_f.rnn1_1_h, model_f.rnn1_2_h, model_f.rnn1_3_h, model_f.rnn2_1_h, model_f.rnn2_2_h, |
| 66 | + model_f.rnn2_3_h, model_f.rnn3_1_h, model_f.rnn3_2_h] |
| 67 | + output_e = 0 |
| 68 | + optimizer_e.zero_grad() |
| 69 | + for i in range(len(all_e_rnn_h)): |
| 70 | + |
| 71 | + # all_f_rnn_h[0].requires_grad = False |
| 72 | + output_e += loss_e.forward(all_e_rnn_h[i],all_f_rnn_h[i].detach()) |
| 73 | + output_e.backward() |
| 74 | + optimizer_e.step() |
| 75 | + |
| 76 | + # if pre_id == 1: |
| 77 | + # print 'loss 1:',output |
| 78 | + return output_f.cuda().data[0], all_pre_data |
| 79 | + |
| 80 | + |
| 81 | +# def train(model_e,model_f, loss, optimizer, x_val, y_val): |
| 82 | +# # x = Variable(x_val.cuda(), requires_grad=False) |
| 83 | +# # y = Variable(y_val.cuda(), requires_grad=False) |
| 84 | +# optimizer.zero_grad() |
| 85 | +# fx = model.forward(x_val) |
| 86 | +# output = 0 |
| 87 | +# # t_y = fx.cpu().data.numpy().argmax(axis=1) |
| 88 | +# # acc = 1. * np.mean(t_y == y_val.numpy()) |
| 89 | +# for pre_id in range(len(fx)): |
| 90 | +# output += loss.forward(fx[pre_id], y_val[pre_id]).data.cpu() |
| 91 | +# # if pre_id == 1: |
| 92 | +# # print 'loss 1:',output |
| 93 | +# output.backward() |
| 94 | +# optimizer.step() |
| 95 | +# |
| 96 | +# return output.cuda().data[0], fx |
| 97 | + |
| 98 | + |
| 99 | +def verify(model_e, model_f, loss, x_val, y_val): |
| 100 | + model_e.init_h0() |
| 101 | + for time in xrange(model_e.num_seqs): |
| 102 | + h_next = model_e(x_val[time]) |
| 103 | + |
| 104 | + fx = [] |
| 105 | + |
| 106 | + model_f.set_h0(model_e) |
| 107 | + |
| 108 | + for time in xrange(model_e.num_seqs): |
| 109 | + pre_data, h_next = model_f(None) |
| 110 | + # print h_next.size() |
| 111 | + fx.append(pre_data) |
| 112 | + |
| 113 | + output = 0 |
| 114 | + for pre_id in range(len(fx)): |
| 115 | + output += loss.forward(fx[pre_id], y_val[pre_id]) |
| 116 | + return output.cuda().data[0] |
| 117 | + |
| 118 | + |
| 119 | +def load_data(code_list): |
| 120 | + test_arr = None |
| 121 | + train_arr = None |
| 122 | + train_imgs_maps = {} |
| 123 | + test_imgs_maps = {} |
| 124 | + for code in code_list: |
| 125 | + file_f = open('data_%s.pkl' % code, 'rb') |
| 126 | + map_l = pickle.load(file_f) |
| 127 | + file_f.close() |
| 128 | + if test_arr is None: |
| 129 | + test_arr = map_l['test_arr'] |
| 130 | + train_arr = map_l['train_arr'] |
| 131 | + else: |
| 132 | + test_arr = np.concatenate((test_arr, map_l['test_arr']), axis=0) |
| 133 | + train_arr = np.concatenate((train_arr, map_l['train_arr']), axis=0) |
| 134 | + train_imgs_maps[code] = map_l['train_imgs_map'] |
| 135 | + test_imgs_maps[code] = map_l['test_imgs_map'] |
| 136 | + |
| 137 | + return train_arr, test_arr, train_imgs_maps, test_imgs_maps |
| 138 | + |
| 139 | + |
| 140 | +def adjust_learning_rate(optimizer, epoch): |
| 141 | + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" |
| 142 | + lr = 0.001 |
| 143 | + lr = lr * (0.3 ** (epoch // 4)) |
| 144 | + for param_group in optimizer.param_groups: |
| 145 | + param_group['lr'] = lr |
| 146 | + |
| 147 | + |
| 148 | +def touch_dir(path): |
| 149 | + result = False |
| 150 | + try: |
| 151 | + path = path.strip().rstrip("\\") |
| 152 | + if not os.path.exists(path): |
| 153 | + os.makedirs(path) |
| 154 | + result = True |
| 155 | + else: |
| 156 | + result = True |
| 157 | + except: |
| 158 | + result = False |
| 159 | + return result |
| 160 | + |
| 161 | + |
| 162 | +def test(input_channels_img, output_channels_img, size_image, max_epoch, model_e, model_f, cuda_test): |
| 163 | + # input_image = np.ones((input_num_seqs,batch_size,input_channels_img,size_image,size_image)) |
| 164 | + # |
| 165 | + # for i in range(input_num_seqs): |
| 166 | + # input_image[i,...] = i*1+1 |
| 167 | + # # input_image = input_image *10 |
| 168 | + # input_image = torch.from_numpy(input_image).float() |
| 169 | + # input_gru = Variable(input_image.cuda()) |
| 170 | + # |
| 171 | + # target_image = np.ones((output_num_seqs,batch_size,output_channels_img,size_image,size_image)) |
| 172 | + # for i in range(output_num_seqs): |
| 173 | + # target_image[i,...] = i*1+1*(input_num_seqs)+1 |
| 174 | + # print target_image[i,0,0,0:3,0:3] |
| 175 | + # # target_image = target_image *10 |
| 176 | + # target_image = torch.from_numpy(target_image).float() |
| 177 | + # target_gru = Variable(target_image.cuda()) |
| 178 | + params = model_e.state_dict() |
| 179 | + print params.keys() |
| 180 | + print params['conv1_act.0.weight'] |
| 181 | + criterion_e = nn.MSELoss() |
| 182 | + criterion_e = criterion_e.cuda() |
| 183 | + optimizer_e = optim.SGD(model_e.parameters(), lr=(0.001), momentum=0.9, weight_decay=0.005) |
| 184 | + |
| 185 | + criterion_f = nn.MSELoss() |
| 186 | + criterion_f = criterion_f.cuda() |
| 187 | + optimizer_f = optim.SGD(model_f.parameters(), lr=(0.001), momentum=0.9, weight_decay=0.005) |
| 188 | + |
| 189 | + for i in range(max_epoch): |
| 190 | + adjust_learning_rate(optimizer_e, i) |
| 191 | + adjust_learning_rate(optimizer_f, i) |
| 192 | + print 'epoch :', i |
| 193 | + print train_arr.shape |
| 194 | + nnn = range(train_arr.shape[0]) |
| 195 | + np.random.shuffle(nnn) |
| 196 | + train_arr_b = train_arr[nnn] |
| 197 | + batch_num = train_arr_b.shape[0] // batch_size |
| 198 | + print batch_num |
| 199 | + for j in range(batch_num): |
| 200 | + batch_img = imgmaps_tonumpy(train_arr_b[j * batch_size:(j + 1) * batch_size, ...], train_imgs_maps) |
| 201 | + input_image = batch_img[:10, ...] / 255. |
| 202 | + target_image = batch_img[10:, ...] / 255. |
| 203 | + input_image = torch.from_numpy(input_image).float() |
| 204 | + input_gru = Variable(input_image.cuda()) |
| 205 | + target_image = torch.from_numpy(target_image).float() |
| 206 | + target_gru = Variable(target_image.cuda()) |
| 207 | + |
| 208 | + error, pre_list = train_by_stype(model_e, model_f, criterion_e, criterion_f, optimizer_e, optimizer_f, |
| 209 | + input_gru, target_gru) |
| 210 | + print j, ' : ', error |
| 211 | + # print model.encoder.conv1_act |
| 212 | + params = model_e.state_dict() |
| 213 | + print params.keys() |
| 214 | + print params['conv1_act.0.weight'] |
| 215 | + batch_num = test_arr.shape[0] // batch_size |
| 216 | + for j in range(batch_num): |
| 217 | + batch_img = imgmaps_tonumpy(test_arr[j * batch_size:(j + 1) * batch_size, ...], test_imgs_maps) |
| 218 | + input_image = batch_img[:10, ...] / 255. |
| 219 | + target_image = batch_img[10:, ...] / 255. |
| 220 | + input_image = torch.from_numpy(input_image).float() |
| 221 | + input_gru = Variable(input_image.cuda()) |
| 222 | + target_image = torch.from_numpy(target_image).float() |
| 223 | + target_gru = Variable(target_image.cuda()) |
| 224 | + |
| 225 | + error = verify(model_e,model_f, criterion_f, input_gru, target_gru) |
| 226 | + print j, ' : ', error |
| 227 | + |
| 228 | + for i in range(test_arr.shape[0]): |
| 229 | + temp_path = test_arr[i, 0, 0] |
| 230 | + start_i = temp_path.find('201') |
| 231 | + time_str = temp_path[start_i:start_i + 12] |
| 232 | + print time_str |
| 233 | + start_i = temp_path.find('AZ') |
| 234 | + radar_code = temp_path[start_i:start_i + 6] |
| 235 | + save_path = '/home/meteo/zihao.chen/model_service/imgs/%s/%s/' % (radar_code, time_str) |
| 236 | + touch_dir(save_path) |
| 237 | + temp_arr = test_arr[i] |
| 238 | + temp_arr = temp_arr[np.newaxis, ...] |
| 239 | + batch_img = imgmaps_tonumpy(temp_arr, test_imgs_maps) |
| 240 | + input_image = batch_img[:10, ...] |
| 241 | + target_image = batch_img[10:, ...] |
| 242 | + input_image_t = torch.from_numpy(input_image / 255.).float() |
| 243 | + input_gru = Variable(input_image_t.cuda()) |
| 244 | + # fx = model.forward(input_gru) |
| 245 | + model_e.init_h0() |
| 246 | + for time in xrange(model_e.num_seqs): |
| 247 | + h_next = model_e(input_gru[time]) |
| 248 | + |
| 249 | + fx = [] |
| 250 | + |
| 251 | + model_f.set_h0(model_e) |
| 252 | + |
| 253 | + for time in xrange(model_e.num_seqs): |
| 254 | + pre_data, h_next = model_f(None) |
| 255 | + # print h_next.size() |
| 256 | + fx.append(pre_data) |
| 257 | + |
| 258 | + for pre_id in range(len(fx)): |
| 259 | + temp_xx = fx[pre_id].cpu().data.numpy() |
| 260 | + tmp_img = temp_xx[0, 0, ...] |
| 261 | + tmp_img = tmp_img * 255. |
| 262 | + true_img = target_image[pre_id, 0, 0, ...] |
| 263 | + encode_img = input_image[pre_id, 0, 0, ...] |
| 264 | + cv2.imwrite(os.path.join(save_path, 'a_%s.png' % pre_id), encode_img) |
| 265 | + cv2.imwrite(os.path.join(save_path, 'c_%s.png' % pre_id), tmp_img) |
| 266 | + cv2.imwrite(os.path.join(save_path, 'b_%s.png' % pre_id), true_img) |
| 267 | + |
| 268 | + # for pre_data in pre_list: |
| 269 | + # temp = pre_data.cpu().data.numpy() |
| 270 | + # print temp.mean() |
| 271 | + |
| 272 | + |
| 273 | +train_arr, test_arr, train_imgs_maps, test_imgs_maps = load_data(['AZ9010','AZ9200']) |
| 274 | + |
| 275 | +if __name__ == '__main__': |
| 276 | + # m = HKOModel(inplanes=1, input_num_seqs=input_num_seqs, output_num_seqs=output_num_seqs) |
| 277 | + m_e = Encoder(inplanes=input_channels_img, num_seqs=input_num_seqs) |
| 278 | + m_e = m_e.cuda() |
| 279 | + |
| 280 | + m_f = Forecaster(num_seqs=output_num_seqs) |
| 281 | + m_f = m_f.cuda() |
| 282 | + |
| 283 | + test(input_channels_img, output_channels_img, size_image, max_epoch, model_e=m_e, model_f=m_f, cuda_test=cuda_flag) |
0 commit comments