-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclean_data.py
48 lines (38 loc) · 1.62 KB
/
clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
df = pd.read_csv('all_sephora_products.csv')
df = df.drop('size', axis=1)
df['price'] = df['price'].apply(lambda x: float(x.split()[0][1:]))
oz_to_mL = 29.5735
df['oz_from_mL'] = df['weight']
df['oz_from_mL'] = df['oz_from_mL'].fillna(df['volume']/oz_to_mL)
df['num_reviews'] = df['num_reviews'].str.replace('K','000')
df['num_reviews'] = df['num_reviews'].astype(int)
df['price_per_oz'] = df['price']/df['oz_from_mL']
df['brand'] = df['brand'].str.lower()
df['name'] = df['name'].str.lower()
df['details'] = df['details'].str.lower()
df['ingredients'] = df['ingredients'].str.lower()
#df['ingredients'] = df['ingredients'].apply(lambda x: x.split('clean at sephora products are formulated without:')[0])
new_loves = []
num_loves = df['num_loves'].values.flatten()
for i, val in enumerate(num_loves):
val = val.split('.')
if len(val) == 2:
new_loves.append(''.join(val).replace('K','00').replace('M','00000'))
else:
new_loves.append(val[0].replace('K','000').replace('M','000000'))
# if 'M' and '.' in val:
# print(val, val.replace('M','00000'))
# new_loves.append(val.replace('.','').replace('M','00000'))
# elif 'M' in val:
# new_loves.append(val.replace('M','000000'))
# elif '.' and 'K' in val:
# new_loves.append(val.replace('.','').replace('K','00'))
# elif 'K' in val:
# print(val, val.replace('K','000'))
# new_loves.append(val.replace('K','000'))
# else:
# new_loves.append(val)
df['num_loves'] = new_loves
df['num_loves'] = df['num_loves'].astype(int)
df.to_csv('sephora_clean.csv', index=False)