-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMDN_data.py
132 lines (98 loc) · 3.38 KB
/
MDN_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""M/D/N queue (D=deterministic)"""
import random
import simpy
import numpy as np
import math
from probabilities import *
import pandas as pd
import scipy.stats as st
def conf_int(mean, var, n, p=0.95):
pnew = (p+1)/2
zval = st.norm.ppf(pnew)
sigma = math.sqrt(var)
alambda = (zval*sigma)/math.sqrt(n)
min_lambda = mean - alambda
plus_lambda = mean + alambda
return f"Confidence interval: [{min_lambda:.4f} < X < {plus_lambda:.4f}] with p = {p}"
class Queue(object):
"""
Create the initial object queue
"""
def __init__(self, env, servers, servicetime):
self.env = env
self.server = simpy.Resource(env, servers)
self.servicetime = servicetime
def service(self, customer):
"""The process"""
yield self.env.timeout(1/MU)
def customer(env, name, qu):
"""Each customer has a ``name`` and requests a server
Subsequently, it starts a process.
need to do sthis differently though...
"""
global arrivals
a = env.now
# print(f'{name} arrives at the servicedesk at {a:.2f}')
arrivals += 1
with qu.server.request() as request:
yield request
global counter
global waiting_time
global leavers
b = env.now
# print('%s enters the servicedesk at %.2f.' % (name, b))
waitingtime = (b - a)
# print(f'{name} waiting time was {waitingtime:.2f}')
waiting_time += waitingtime
counter += 1
yield env.process(qu.service(name))
# print('%s leaves the servicedesk at %.2f.' % (name, env.now))
leavers += 1
def setup(env, servers, servicetime, t_inter):
"""Create a queue, a number of initial customers and keep creating customers
approx. every 1/lambda*60 minutes."""
# Generate queue
queue = Queue(env, SERVERS, MU)
# Create 1 initial customer
# for i in range(1):
i = 0
env.process(customer(env, f'Customer {i}', queue))
# Create more customers while the simulation is running
while True:
yield env.timeout(np.random.exponential(1/LAMBDA, 1)[0])
i += 1
env.process(customer(env, f'Customer {i}', queue))
# Setup and start the simulation
print('QUEUE SIMULATION\n')
### SETTINGS
RHO= [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.975]
MU = 1 # 1/mu is exponential service times
SERVERS = 4 #2,4
SIMULATIONS = 500
column = ['RHO', 'SIM_TIME', 'AVG_WAIT']
data_sims = []
SIM_TIME = 500 # simulation time in time unitsSIMULATIONS = 500
# print(f'Simulations: {SIMULATIONS}')
# Simulations
for rho in RHO:
LAMBDA = rho * (MU * SERVERS) # 1/lambda is exponential inter arrival times
# Create dataframe to store important values to calculate statistics
data = pd.DataFrame(columns=column)
for s in range(SIMULATIONS):
waiting_time = 0
counter = 0
arrivals = 0
leavers = 0
# Create an environment and start the setup process
env = simpy.Environment()
env.process(setup(env, SERVERS, MU, LAMBDA))
# Execute the simulation
env.run(until=SIM_TIME)
rho = LAMBDA/(SERVERS*MU)
avg_waiting = waiting_time/(counter)
avg_arrivals = arrivals/SIM_TIME
avg_leavers = leavers/SIM_TIME
data.loc[s] = [rho, SIM_TIME, avg_waiting]
data_sims.append(data)
print(pd.concat(data_sims))
pd.concat(data_sims).to_csv('data/MDN_4.txt', sep='\t', index=False)