You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Because my data(source and sink) is relatively small(about 1*10^-7),I could use the original data to estimate the proportions of different sources to a sample of a sink.But I found that i can not use the original data to verify the accuracy of the model by using a leave-one-out (LOO) strategy,I probably know that it is due to the data problem, because I found that it can be calculated after turning the data into integers (ceiling 10^7, enlarged data), but I want to know if it is feasible to verify by this enlarged data set?
There are main two ways to use this script:
(1) Estimating the proportions of different (microbial) sources to a sample of a (microbial) sink.
(2) Using a leave-one-out (LOO) strategy, predict the metadata class of a given (microbial) sample.
Traceback (most recent call last):
File "/home/chenp/miniconda2/envs/st2/bin/sourcetracker2", line 8, in
sys.exit(cli())
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 829, in call
return self.main(*args, **kwargs)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 782, in main
rv = self.invoke(ctx)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 1066, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 610, in invoke
return callback(*args, **kwargs)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/sourcetracker/_cli/gibbs.py", line 214, in gibbs
f(sample)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/sourcetracker/_sourcetracker.py", line 861, in _cli_loo_runner
_sd[row] -= sink_data
TypeError: Cannot cast ufunc subtract output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
The text was updated successfully, but these errors were encountered:
Because my data(source and sink) is relatively small(about 1*10^-7),I could use the original data to estimate the proportions of different sources to a sample of a sink.But I found that i can not use the original data to verify the accuracy of the model by using a leave-one-out (LOO) strategy,I probably know that it is due to the data problem, because I found that it can be calculated after turning the data into integers (ceiling 10^7, enlarged data), but I want to know if it is feasible to verify by this enlarged data set?
There are main two ways to use this script:
(1) Estimating the proportions of different (microbial) sources to a sample of a (microbial) sink.
(2) Using a leave-one-out (LOO) strategy, predict the metadata class of a given (microbial) sample.
I use the test dataset as an example:
original data:
#OTU ID s4 s5 s7 s8 s9
o0 0.0000004 0.0000005 0.0000007 0.0000008 0.0000009
o1 0.0000014 0.0000015 0.0000017 0.0000018 0.0000019
o2 0.0000024 0.0000025 0.0000027 0.0000028 0.0000029
o3 0.0000034 0.0000035 0.0000037 0.0000038 0.0000039
o4 0.0000044 0.0000045 0.0000047 0.0000048 0.0000049
o5 0.0000054 0.0000055 0.0000057 0.0000058 0.0000059
o6 0.0000064 0.0000065 0.0000067 0.0000068 0.0000069
o7 0.0000074 0.0000075 0.0000077 0.0000078 0.0000079
o8 0.0000084 0.0000085 0.0000087 0.0000088 0.0000089
o9 0.0000094 0.0000095 0.0000097 0.0000098 0.0000099
o10 0.0000104 0.0000105 0.0000107 0.0000108 0.0000109
o11 0.0000114 0.0000115 0.0000117 0.0000118 0.0000119
o12 0.0000124 0.0000125 0.0000127 0.0000128 0.0000129
o13 0.0000134 0.0000135 0.0000137 0.0000138 0.0000139
o14 0.0000144 0.0000145 0.0000147 0.0000148 0.0000149
o15 0.0000154 0.0000155 0.0000157 0.0000158 0.0000159
o16 0.0000164 0.0000165 0.0000167 0.0000168 0.0000169
o17 0.0000174 0.0000175 0.0000177 0.0000178 0.0000179
o18 0.0000184 0.0000185 0.0000187 0.0000188 0.0000189
o19 0.0000194 0.0000195 0.0000197 0.0000198 0.0000199
enlarged data:
#OTU ID s4 s5 s7 s8 s9
o0 4 5 7 8 9
o1 14 15 17 18 19
o2 24 25 27 28 29
o3 34 35 37 38 39
o4 44 45 47 48 49
o5 54 55 57 58 59
o6 64 65 67 68 69
o7 74 75 77 78 79
o8 84 85 87 88 89
o9 94 95 97 98 99
o10 104 105 107 108 109
o11 114 115 117 118 119
o12 124 125 127 128 129
o13 134 135 137 138 139
o14 144 145 147 148 149
o15 154 155 157 158 159
o16 164 165 167 168 169
o17 174 175 177 178 179
o18 184 185 187 188 189
o19 194 195 197 198 199
error:
Traceback (most recent call last):
File "/home/chenp/miniconda2/envs/st2/bin/sourcetracker2", line 8, in
sys.exit(cli())
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 829, in call
return self.main(*args, **kwargs)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 782, in main
rv = self.invoke(ctx)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 1066, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/click/core.py", line 610, in invoke
return callback(*args, **kwargs)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/sourcetracker/_cli/gibbs.py", line 214, in gibbs
f(sample)
File "/home/chenp/miniconda2/envs/st2/lib/python3.5/site-packages/sourcetracker/_sourcetracker.py", line 861, in _cli_loo_runner
_sd[row] -= sink_data
TypeError: Cannot cast ufunc subtract output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
The text was updated successfully, but these errors were encountered: