-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
207 lines (169 loc) · 8.57 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch.nn.functional as F
import torch.utils.data as data
import torch
import timm
from gcn import GCNBlock
import torch.nn as nn
import numpy as np
from skimage.util.shape import view_as_windows
from att_utils import MultiheadAttention
class CrossAttention(nn.Module):
"""
Cross-Attention between two branches. Originaly introduced in https://github.com/IBM/CrossViT
"""
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # B1C -> B1H(C/H) -> BH1(C/H)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
x = self.proj(x)
x = self.proj_drop(x)
return x
class MHSA(nn.Module):
"""
Define a MHSA class for stacking in nn.ModuleList()
"""
def __init__(self, embed_dim, num_heads):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.mhsa = MultiheadAttention(embed_dim=self.embed_dim, num_heads=self.num_heads, batch_first=True)
def forward(self, x, att_mask=None):
return self.mhsa(x, x, x, attn_mask=att_mask)[0]
class SCUBaNet(nn.Module):
def __init__(self, num_nodes=None, node_dim=None, embed_dim=None, num_gcns=12, bn=1, add_self=1, normalize_embedding=1, num_classes=4):
super().__init__()
"""
SCUBa-Net
:param num_gcns: int: The number of GCN layers in F^C
:param num_nodes: int: The number of nodes in spatially-constrained graph G^C
:param node_dim: int, optional: The number of nodes in spatially-constrained graph G^C
:param embed_dim: int, optional: Embedding size of nodes in both G_c G^C and G^U
"""
self.num_gcns = num_gcns
self.num_nodes = num_nodes
self.node_dim = node_dim
self.embed_dim = embed_dim
self.bn = bn
self.add_self = add_self
self.normalize_embedding = normalize_embedding
self.num_classes = num_classes
# 1. DESIGN OF F^C BLOCK
## Virtual node of spatially-constrained graph
self.vrt_node_c = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
nn.init.normal_(self.vrt_node_c, std=1e-6)
## First N_L GCN layers to process spatially-constrained graph
self.F_c_gcn = nn.ModuleList([
GCNBlock(self.node_dim, self.embed_dim, self.bn, self.add_self, self.normalize_embedding, 0., 'relu')
if (i == 0) else \
GCNBlock(self.embed_dim, self.embed_dim, self.bn, self.add_self, self.normalize_embedding, 0., 'relu')
for i in range(self.num_gcns)
])
## GCN layers to update virtual node of spatially-constrained graph
self.F_c_update_vrt_node = nn.ModuleList([
GCNBlock(self.embed_dim, self.embed_dim, self.bn, self.add_self, self.normalize_embedding, 0., 'relu')
for _ in range(self.num_gcns)
])
## Masked multi-head self-attention to capture long-range dependencies
self.F_c_mhsa = nn.ModuleList(
[
MHSA(embed_dim=self.embed_dim, num_heads=8)
for _ in range(self.num_gcns)
]
)
# 2. DESIGN OF F^U BLOCK
## F^{U} block is built upon Vision Transformer
vit = timm.create_model('vit_base_patch32_384', num_classes=0, pretrained=True).cuda()
self.vit_pre = vit.patch_embed
self._pos_embed = vit._pos_embed
self.vit_blocks = nn.ModuleList([*vit.blocks]).cuda()
# 3. DESIGN OF F^{X}_{N->N} block
vit_regions = view_as_windows(np.arange(0, 144).reshape(12, 12), (3, 3), step=3).reshape(-1, 9) # To view seq of ViT patches as a tensor 784 x 12 x 12
self.u2c_relationships = torch.from_numpy(vit_regions).cuda() # Relationship indices
## Multi-head Cross-attention to transfer from nodes of spatially-unconstrained graph to spatially-constrained graph
self.mhca_from_gu_to_gc = nn.ModuleList([
CrossAttention(dim=self.embed_dim, num_heads=8)
for _ in range(self.num_gcns)
])
# 4. DESIGN OF F^{X}_{C->U}
self.mhca_c_to_u = CrossAttention(dim=self.embed_dim, num_heads=8)
# 5. DESIGN OF F^{X}_{U->C}
self.mhca_u_to_c = CrossAttention(dim=self.embed_dim, num_heads=8)
# Classifier
self.classifier_ = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.embed_dim * 1, self.num_classes),
)
def get_G_u_by_indices(self, tokens, indices):
"""
To get indices of ViT tokens, i.e., nodes in spatially-unconstrained graph to interact with node in spatially-constrained graph
:param tokens: torch.Tensor: Seq of ViT tokens
:param indices: torch.Tensor: Indices as a tensor
"""
patch_tokens = []
for ind in indices:
patch_tokens.append(tokens[:, ind, :].unsqueeze(1))
return patch_tokens
def forward(self, imgs, G_c, adjs):
"""
:param G_c: torch.Tensor: Spatially-constrained graph
:param G_u: torch.Tensor: Spatially-unconstrained graph
"""
imgs = imgs.permute(0, 3, 1, 2)
bs, _, _ = G_c.shape
# 1. SPATIALLY-CONSTRAINED GRAPH'S BRANCH
## Adjs for spatially-constrained graph's nodes
nodes_adjs = adjs[:, 1:, 1:]
masks = torch.ones(G_c.shape[:2]).to(adjs)
## Update of spatially-constrained graph's nodes
for node_layer in self.F_c_gcn:
G_c = node_layer(G_c, nodes_adjs, masks)
## Concatenate virtual node node for spatially-constrained graph
vrt_node_c = self.vrt_node_c.repeat(bs, 1, 1)
G_c = torch.cat([vrt_node_c, G_c], dim=1)
masks = torch.ones(G_c.shape[:2]).to(adjs)
# 2. SPATIALLY-UNCONSTRAINED GRAPH
G_u = self.vit_pre(imgs)
G_u = self._pos_embed(G_u)
## 3. BI-GRAPH INTERACTION IMPLEMENTATION
# [cls] node update and ViT-GCN interactions
for _, (cls_layer, vit_block, cls_mhsa_layer, cross_att) in enumerate(zip(self.F_c_update_vrt_node, self.vit_blocks, self.F_c_mhsa, self.mhca_from_gu_to_gc)):
# Vision transformer block
G_u = vit_block(G_u)
# Update virtual node along with other nodes in spatially-constrained graph
G_c = cls_layer(G_c, adjs, masks)
G_c += cls_mhsa_layer(G_c, att_mask=(adjs == 0).repeat(8, 1, 1))
# Node-to-node interaction
patch_G_u = self.get_G_u_by_indices(G_u[:, 1:, :], self.u2c_relationships)
patch_G_u = torch.cat(patch_G_u, dim=1) # bs, 16, 9, 768
patch_G_u = patch_G_u.view(-1, self.u2c_relationships.shape[-1], self.embed_dim) # bs * 16, 9, 768
reshaped_G_c = G_c[:, 1:].reshape(-1, self.embed_dim).unsqueeze(1) # bs * 16, 1, 768
relationship = reshaped_G_c + cross_att(torch.cat([reshaped_G_c, patch_G_u], dim=1))
G_c[:, 1:] = relationship.reshape(bs, self.u2c_relationships.shape[0], self.embed_dim) # bs, 1, 768
## 4. U->C interaction
G_c[:, 0:1] += self.mhca_c_to_u(torch.cat([G_c[:, 0:1, :], G_u[:, 1:]], dim=1))
## 5. C->U interaction
G_u[:, 0:1] += self.mhca_u_to_c(torch.cat([G_u[:, 0:1, :], G_c[:, 1:]], dim=1))
# 5. Classification using only virtual nodes
ce_logits = [G_u[:, 0], G_c[:, 0]]
ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0)
probs = self.classifier_(ce_logits)
# 6. We done!
return probs
select_model = SCUBaNet