forked from lkwagner/autogenv2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecipes.py
539 lines (466 loc) · 16.9 KB
/
Recipes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import Manager as mgmt
from copy import deepcopy
from Crystal import CrystalWriter,CrystalReader
from CrystalRunner import LocalCrystalRunner,CrystalRunnerPBS
from PropertiesReader import PropertiesReader
from PropertiesRunner import LocalPropertiesRunner
import average_tools as avg
import copy
import numpy as np
def separate_jastrow(f):
tokens=f.readlines()
in_jastrow=False
nopen=0
nclose=0
ret=""
for line in tokens:
if line.find("JASTROW2") != -1:
in_jastrow=True
if in_jastrow:
nopen+=line.count("{")
nclose+=line.count("}")
if in_jastrow and nopen >= nclose:
ret+=line
return ret
#########################################################
class Recipe:
""" Contains DFT and QMC steps in the order they need to be performed.
* One job per directory.
* For most users, a child class of this should be used."""
def __init__(self,jobid,jobplans,managers):
self.jobid=jobid
self.managers=managers
self.picklefn="%s.pickle"%jobid
#---------------------------------------
def is_consistent(self,other):
result=True
if len(other.managers)!=len(self.managers):
print('You have added or removed tasks for this job.')
result=False
for rec_manager,plan_manager in zip(other.managers,self.managers):
plancheck=plan_manager.is_consistent(rec_manager)
if plancheck==False:
print('You have modified a job.')
result=False
return result
#---------------------------------------
def nextstep(self):
for manager in self.managers:
manager.nextstep()
if manager.status()!='ok':
break
#---------------------------------------
def write_summary(self):
for manager in self.managers:
if manager.status()=='ok':
manager.write_summary()
#---------------------------------------
def generate_report(self):
print("generate_report not implemented for this Recipe")
return {'id':self.jobid}
##########################################################
class LocalCrystalDFT(Recipe):
""" An example of a Recipe that perfoms a crystal DFT calculation """
def __init__(self,jobid,struct,crystal_opts,structtype='cif'):
# May have it automatically detect file type? Probably wouldn't be too hard.
inpcopy=deepcopy(crystal_opts)
self.jobid=jobid
#TODO primitive option.
cwriter=CrystalWriter()
if structtype=='cif':
cwriter.set_struct_fromcif(struct)
elif structtype=='xyz':
cwriter.set_struct_fromxyz(struct)
else:
raise ValueError("structtype not recognized.")
cwriter.set_options(crystal_opts)
# For this simple case, only one Manager is needed.
self.managers=[mgmt.CrystalManager(
cwriter,
CrystalReader(),
LocalCrystalRunner(),
PropertiesReader(),
LocalPropertiesRunner()
)]
self.picklefn="%s.pickle"%jobid
##########################################################
from Crystal2QMCRunner import LocalCrystal2QMCRunner
from Crystal2QMCReader import Crystal2QMCReader
from Variance import VarianceWriter,VarianceReader
from Linear import LinearWriter,LinearReader
from Postprocess import PostprocessWriter,PostprocessReader
from QWalkRunner import LocalQWalkRunner,QWalkRunnerPBS
from DMC import DMCWriter,DMCReader
class LocalCrystalQWalk(Recipe):
""" In this we will perform the following recipe:
1) A Crystal calculation.
2) Convert the Crystal calculation to QWalk, form a Slater determinant trial function.
3) Run variance optimization on a Jastrow factor for the gamma point.
4) Remove OPTIMIZEBASIS from Jastrow, run energy optimization using LINEAR.
5) Run DMC on all k-points, saving configurations to a .trace file.
6) Run properties on the .trace file.
"""
def __init__(self,jobid,struct,
crystal_opts={},
variance_opts={},
energy_opts={},
dmc_opts={},
structtype='cif',
crystalrunner=CrystalRunnerPBS(),
qwalkrunner=QWalkRunnerPBS(np=6)):
# May have it automatically detect file type? Probably wouldn't be too hard.
inpcopy=deepcopy(crystal_opts)
self.jobid=jobid
cwriter=CrystalWriter()
if structtype=='cif':
cwriter.set_struct_fromcif(struct)
elif structtype=='xyz':
cwriter.set_struct_fromxyz(struct)
else:
raise ValueError("structtype not recognized.")
cwriter.set_options(crystal_opts)
self.managers=[mgmt.CrystalManager(
cwriter,
crystalrunner,
CrystalReader(),
LocalPropertiesRunner(),
PropertiesReader()
),
mgmt.QWalkfromCrystalManager(
LocalCrystal2QMCRunner(),
Crystal2QMCReader()
),
mgmt.QWalkRunManager(
VarianceWriter(variance_opts),
copy.deepcopy(qwalkrunner),
VarianceReader()
),
mgmt.QWalkRunManager(
LinearWriter(energy_opts),
copy.deepcopy(qwalkrunner),
LinearReader()
),
mgmt.QWalkRunManager(
DMCWriter(dmc_opts),
copy.deepcopy(qwalkrunner),
DMCReader()
)
]
self.picklefn="%s.pickle"%jobid
#--------------------------------------------
def nextstep(self):
cry=0 #crystal index
con=1 #converter index
var=2 #variance index
en=3 #energy index
dmc=4
self.managers[cry].nextstep()
if self.managers[cry].status()!='ok':
return
self.managers[con].nextstep()
if self.managers[con].status()!='ok':
print("I think crystal is still running")
return
bases=self.managers[con].reader.out['basenames']
ind=bases.index('qw_000')
files={}
for key in ['sysfiles','slaterfiles','jastfiles','basenames']:
files[key]=[self.managers[con].reader.out[key][ind]]
self.managers[var].writer.set_options(files)
self.managers[var].nextstep()
if self.managers[var].status()!='ok':
return
files={'basenames':[],
'sysfiles':[],
'wffiles':[] }
for base in [bases[ind]]:#self.managers[con].reader.out['basenames']:
files['basenames'].append(base)
files['wffiles'].append(base+".energy.wfin")
files['sysfiles'].append(base+".sys")
with open(base+".variance.wfout") as fin:
fout=open(base+".energy.wfin",'w')
for line in fin:
fout.write(line.replace("OPTIMIZEBASIS",''))
fout.close()
self.managers[en].writer.set_options(files)
self.managers[en].nextstep()
if self.managers[en].status()!='ok':
return
jast=separate_jastrow(open("qw_000.energy.wfout"))
files={'basenames':[],
'sysfiles':[],
'wffiles':[] }
for i in bases:
wfname=i+'.dmc.wf'
with open(wfname,'w') as f:
f.write("slater-jastrow \n" +\
"wf1 { include %s.slater }\n"%i +\
"wf2 { " + jast + "} \n ")
f.close()
files['wffiles'].append(wfname)
files['sysfiles'].append(i+".sys")
files['basenames'].append(i)
self.managers[dmc].writer.set_options(files)
self.managers[dmc].nextstep()
if self.managers[dmc].status()!='ok':
return
#---------------------------------------
def generate_report(self):
cry=0 #crystal index
con=1 #converter index
var=2 #variance index
en=3 #energy index
dmc=4
ret={'id':self.jobid}
if self.managers[cry].status()=='ok':
ret['crystal_energy']=self.managers[cry].creader.out['total_energy']
if self.managers[var].status()=='ok':
varopt={}
for f,out in self.managers[var].reader.output.items():
sigma=[]
for run in out:
sigma.extend(run['sigma'])
varopt[f]=sigma
ret['variance_optimization']=varopt
if self.managers[en].status()=='ok':
enopt={}
for f,out in self.managers[en].reader.output.items():
en=[]
err=[]
for run in out:
en.extend(run['energy'])
err.extend(run['energy_err'])
enopt[f]={'energy':copy.deepcopy(en),
'energy_err':copy.deepcopy(err)}
ret['energy_optimization']=enopt
if self.managers[dmc].status()=='ok':
#here we average over k-points
dmcret={'timestep':[],'energy':[],'energy_err':[]}
basenames=self.managers[con].reader.out['basenames']
timesteps=self.managers[dmc].writer.timesteps
for t in timesteps:
ens=[]
errs=[]
for base in basenames:
nm=base+'t'+str(t)+".dmc.log"
ens.append(self.managers[dmc].reader.output[nm]['properties']['total_energy']['value'][0])
err.append(self.managers[dmc].reader.output[nm]['properties']['total_energy']['error'][0])
dmcret['timestep'].append(t)
dmcret['energy'].append(np.mean(ens))
dmcret['energy_err'].append(np.sqrt(np.mean(np.array(err)**2)))
ret['dmc']=dmcret
return ret
#######################################################
from PySCF import PySCFWriter,PySCFPBCWriter,PySCFReader
from PySCFRunner import PySCFRunnerPBS
class PySCFQWalk(Recipe):
""" Use PySCF to generate a QWalk run. """
def __init__(self,jobid,
pyscf_opts={},
variance_opts={},
energy_opts={},
dmc_opts={},
post_opts={},
pyscfrunner=PySCFRunnerPBS(np=4),
qwalkrunner=QWalkRunnerPBS(np=4)):
self.jobid=jobid
self.picklefn="%s.pickle"%jobid
# Flexible qwalk runners.
if type(qwalkrunner)==dict:
qwalkrunners=copy.deepcopy(qwalkrunner)
else: # old behavior maintained.
qwalkrunners={
'variance':copy.deepcopy(qwalkrunner),
'energy':copy.deepcopy(qwalkrunner),
'dmc':copy.deepcopy(qwalkrunner),
'postprocess':copy.deepcopy(qwalkrunner)
}
assert ('xyz' in pyscf_opts.keys())^('cif' in pyscf_opts.keys()),"""
Exactly one of 'xyz' and 'cif' must be set. """
assert post_opts=={} or dmc_opts['savetrace'],"""
You need to save the trace (dmc_opts['savetrace']=True) to use postprocess options."""
if 'xyz' in pyscf_opts.keys():
self.managers=[mgmt.PySCFManager(
PySCFWriter(pyscf_opts),
copy.deepcopy(pyscfrunner),
PySCFReader()
)]
else:
self.managers=[mgmt.PySCFManager(
PySCFPBCWriter(pyscf_opts),
copy.deepcopy(pyscfrunner),
PySCFReader()
)]
self.managers+=[
mgmt.QWalkRunManager(
VarianceWriter(variance_opts),
qwalkrunners['variance'],
VarianceReader()
),
mgmt.QWalkRunManager(
LinearWriter(energy_opts),
qwalkrunners['energy'],
LinearReader()
),
mgmt.QWalkRunManager(
DMCWriter(dmc_opts),
qwalkrunners['dmc'],
DMCReader()
),
mgmt.QWalkRunManager(
PostprocessWriter(post_opts),
qwalkrunners['postprocess'],
PostprocessReader()
)
]
#-----------------------------
def nextstep(self):
pyscf=0 #crystal index
var=1 #variance index
en=2 #energy index
dmc=3
post=4
# PySCF.
self.managers[pyscf].nextstep()
if self.managers[pyscf].status()!='ok':
return
# Variance minimization.
base='qw'
files={}
files['sysfiles']=[base+'.sys']
files['slaterfiles']=[base+'.slater']
files['basenames']=[base]
files['jastfiles']=[base+'.jast2']
self.managers[var].writer.set_options(files)
self.managers[var].nextstep()
if self.managers[var].status()!='ok':
return
# Energy minimization.
files={'basenames':[],
'sysfiles':[],
'wffiles':[] }
files['basenames'].append(base)
files['wffiles'].append(base+".energy.wfin")
files['sysfiles'].append(base+".sys")
with open(base+".variance.wfout") as fin:
fout=open(base+".energy.wfin",'w')
for line in fin:
fout.write(line.replace("OPTIMIZEBASIS",'').replace(" SLATER\n","SLATER OPTIMIZE_DET\n"))
fout.close()
self.managers[en].writer.set_options(files)
self.managers[en].nextstep()
if self.managers[en].status()!='ok':
return
# DMC.
# Why does it need to seperate the jastrow?
#jast=separate_jastrow(open("qw.energy.wfout"))
files={'basenames':[],
'sysfiles':[],
'wffiles':[],
'tracefiles':[]}
for i in [base]:
wfname=i+'.dmc.wf'
# Just copy over the results from the VMC energy minimization.
with open(wfname,'w') as outf:
outf.write(open(base+'.energy.wfout').read())
files['wffiles'].append(wfname)
files['sysfiles'].append(i+".sys")
files['basenames'].append(i)
files['tracefiles'].append(i+".dmc.trace")
self.managers[dmc].writer.set_options(files)
self.managers[dmc].nextstep()
if self.managers[dmc].status()!='ok':
return
# Post process.
self.managers[post].writer.set_options(files)
self.managers[post].nextstep()
if self.managers[post].status()!='ok':
return
#-----------------------------
def generate_report(self):
pyscf=0 #pyscf index
var=1 #variance index
en=2 #energy index
dmc=3
post=4
ret={'id':self.jobid}
# Collect from PySCF.
if self.managers[pyscf].status()=='ok':
pyout={'energy':[],'density_matrix':[],'file':[]}
for f, out in self.managers[pyscf].reader.output.items():
if out['mcscf'] is not None:
pyout['file'].append(f)
pyout['energy'].append(out['mcscf']['e_tot'])
# TODO density matrix for MC state is more complicated...
else:
pyout['energy'].append(out['scf']['e_tot'])
pyout['density_matrix'].append(out['density_matrix'].tolist())
ret['pyscf']=pyout
# Collect from VMC variance optimization.
if self.managers[var].status()=='ok':
varopt={}
for f,out in self.managers[var].reader.output.items():
sigma=[]
for run in out:
sigma.extend(run['sigma'])
varopt[f]=sigma
ret['variance_optimization']=varopt
# Collect from VMC energy optimization.
if self.managers[en].status()=='ok':
enopt={}
for f,out in self.managers[en].reader.output.items():
en=[]
err=[]
for run in out:
en.extend(run['energy'])
err.extend(run['energy_err'])
enopt[f]={'energy':en,'energy_err':err}
ret['energy_optimization']=enopt
# Collect from DMC.
if self.managers[dmc].status()=='ok':
extra_obs=self.managers[dmc].writer.extra_observables
basenames=self.managers[dmc].writer.basenames
timesteps=self.managers[dmc].writer.timesteps
dmcret={'timestep':[],'energy':[],'energy_err':[]}
for obs in extra_obs:
dmcret[obs['name']]=[]
for t in timesteps:
dmcret['timestep'].append(t)
# Energy results.
ens=[]
errs=[]
for base in basenames:
nm=base+'t'+str(t)+".dmc.log"
en=self.managers[dmc].reader.output[nm]['properties']['total_energy']
ens.append(en['value'][0])
errs.append(en['error'][0])
# k-average.
dmcret['energy'].append(np.mean(ens))
dmcret['energy_err'].append(np.sqrt(np.mean(np.array(errs)**2)))
# Property results (if any).
for obs in extra_obs:
dmcret[obs['name']]=deepcopy(obs)
fnames=[base+'t'+str(t)+".dmc.log" for base in basenames]
allk=[self.managers[dmc].reader.output[nm]['properties'][avg.gosling_key(obs['name'])]
for nm in fnames]
dmcret[obs['name']].update(avg.kaverage(obs['name'],allk))
ret['dmc']=dmcret
# Collect from post processing.
if self.managers[post].status()=='ok':
extra_obs=self.managers[post].writer.extra_observables
basenames=self.managers[post].writer.basenames
tracefiles=self.managers[post].writer.tracefiles
postret={'tracefile':[],'energy':[],'energy_err':[]}
for obs in extra_obs:
postret[obs['name']]=[]
for trace in tracefiles:
postret['tracefile'].append(trace)
# Property results (if any).
for obs in extra_obs:
postret[obs['name']]=deepcopy(obs)
fnames=[trace.replace("trace","post.json") for base in basenames]
allk=[self.managers[post].reader.output[nm]['properties'][avg.gosling_key(obs['name'])]
for nm in fnames]
postret[obs['name']].update(avg.kaverage(obs['name'],allk))
ret['post']=postret
return ret