forked from M32O32L/Flood
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCODE.py
456 lines (410 loc) · 22.8 KB
/
CODE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import pandas as pd
import numpy as np
import keras_tuner
import pickle
import shap
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from keras import layers
from pathlib import Path
from tensorflow import keras
from sklearn.metrics import mean_squared_error
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
np.random.seed(42)
tf.random.set_seed(42)
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
select_model = 3
search_time = 15
forecast_period = 5
steps = 24
search_project_name = "{}_{}_{}".format(search_time, forecast_period, steps)
save_search_path = Path('E:/draft/00') / search_project_name
save_search_path.mkdir(exist_ok=True)
save_results_path = Path('E:/draft') / search_project_name
save_results_path.mkdir(exist_ok=True)
data = pd.read_excel('北江数据(13降雨+4流量+输入步长48h).xlsx')
rainfall_data = data.iloc[:, 1:18].values
flow_data = data.iloc[:, 20].values
flow_data_rank_conversion = flow_data.reshape(-1, 1)
if select_model == 1:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.Conv1D(filters=hp.Choice('conv1_filters', [8, 16, 32, 64]), kernel_size=3, activation='relu')(inputs)
# z = layers.MaxPooling1D(pool_size=2)(z)
# z = layers.Conv1D(filters=hp.Choice('conv2_filters', [8, 16, 32, 64]), kernel_size=3,activation='relu')(z)
# z = layers.MaxPooling1D(pool_size=2)(z)
# z = layers.LSTM(units=hp.Choice('lstm_units', [8, 16, 32, 64]))(z)
# z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
z = layers.Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1))(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best conv1_filters:', best_hyperparameters.get('conv1_filters'))
print('Best dense_units:', best_hyperparameters.get('dense_units'))
print('Best dropout:', best_hyperparameters.get('dropout'))
elif select_model == 2:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.LSTM(units=hp.Choice('lstm_units', [8, 16, 32, 64, 128]))(inputs)
z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
z = layers.Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1))(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best lstm_units:', best_hyperparameters.get('lstm_units'))
print('Best dense_units:', best_hyperparameters.get('dense_units'))
print('Best dropout:', best_hyperparameters.get('dropout'))
elif select_model == 3:
if forecast_period == 1:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.Conv1D(filters=hp.Choice('conv1_filters', [8, 16, 32, 64, 128]), kernel_size=3, activation='relu')(inputs)
z = layers.LSTM(units=hp.Choice('lstm1_units', [8, 16, 32, 64]))(z)
z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense1_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
z = layers.Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1))(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best conv1_filters:', best_hyperparameters.get('conv1_filters'))
print('Best lstm1_units:', best_hyperparameters.get('lstm1_units'))
print('Best dense1_units:', best_hyperparameters.get('dense1_units'))
elif forecast_period == 3:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.Conv1D(filters=hp.Choice('conv1_filters', [16, 32, 64, 128]), kernel_size=3, activation='relu')(inputs)
z = layers.Conv1D(filters=hp.Choice('conv2_filters', [16, 32, 64, 128]), kernel_size=3, activation='relu')(z)
z = layers.LSTM(units=hp.Choice('lstm1_units', [16, 32, 64, 128]))(z)
z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense1_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Adam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best conv1_filters:', best_hyperparameters.get('conv1_filters'))
print('Best conv2_filters:', best_hyperparameters.get('conv2_filters'))
print('Best lstm1_units:', best_hyperparameters.get('lstm1_units'))
print('Best dense1_units:', best_hyperparameters.get('dense1_units'))
elif forecast_period == 5:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.Conv1D(filters=hp.Choice('conv1_filters', [8, 16, 32, 64, 128]), kernel_size=3, activation='relu')(inputs)
z = layers.Conv1D(filters=hp.Choice('conv2_filters', [8, 16, 32, 64, 128]), kernel_size=3, activation='relu')(z)
z = layers.LSTM(units=hp.Choice('lstm1_units', [8, 16, 32, 64, 128]))(z)
z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense1_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
z = layers.Dense(units=hp.Choice('dense2_units', [32, 64, 128]), kernel_initializer='random_normal')(z)
z = layers.Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1))(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best conv1_filters:', best_hyperparameters.get('conv1_filters'))
print('Best conv2_filters:', best_hyperparameters.get('conv2_filters'))
print('Best lstm1_units:', best_hyperparameters.get('lstm1_units'))
print('Best dense1_units:', best_hyperparameters.get('dense1_units'))
print('Best dense2_units:', best_hyperparameters.get('dense2_units'))
elif forecast_period == 7:
def build_model(hp):
inputs = keras.Input(shape=(steps, 17))
z = layers.Conv1D(filters=hp.Choice('conv1_filters', [64, 128]), kernel_size=3, activation='relu')(inputs)
# z = layers.BatchNormalization()(z)
# z = layers.MaxPooling1D(pool_size=2)(z)
z = layers.Conv1D(filters=hp.Choice('conv2_filters', [16, 64]), kernel_size=3, activation='relu')(z)
z = layers.Conv1D(filters=hp.Choice('conv3_filters', [16, 32]), kernel_size=3, activation='relu')(z)
z = layers.LSTM(units=hp.Choice('lstm1_units', [128]))(z)
z = layers.LeakyReLU()(z)
z = layers.Flatten()(z)
z = layers.Dense(units=hp.Choice('dense1_units', [32]), kernel_initializer='random_normal')(z)
z = layers.Dense(units=hp.Choice('dense2_units', [64]), kernel_initializer='random_normal')(z)
outputs = layers.Dense(forecast_period)(z)
model = keras.Model(inputs, outputs)
model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
return model
tuner = keras_tuner.RandomSearch(build_model, objective='val_loss', max_trials=15,
directory=save_search_path, project_name=search_project_name)
tuner.search(train_ds, epochs=40, validation_data=validate_ds)
best_model = tuner.get_best_models(num_models=1)[0]
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model.compile(optimizer=keras.optimizers.Nadam(0.001), loss='mse')
history = best_model.fit(train_ds, epochs=40, verbose=1, validation_data=validate_ds)
val_loss_avg_mse = best_model.evaluate(validate_ds, verbose=1)
print(f'Average MSE: {val_loss_avg_mse}')
print('Best conv1_filters:', best_hyperparameters.get('conv1_filters'))
print('Best conv2_filters:', best_hyperparameters.get('conv2_filters'))
print('Best conv3_filters:', best_hyperparameters.get('conv3_filters'))
print('Best lstm1_units:', best_hyperparameters.get('lstm1_units'))
print('Best dense1_units:', best_hyperparameters.get('dense1_units'))
print('Best dense2_units:', best_hyperparameters.get('dense2_units'))
best_model.save(save_results_path / 'best_model.h5')
with open(save_results_path / 'best_hyperparameters.pkl', 'wb') as f:
pickle.dump(best_hyperparameters, f)
with open(save_results_path / 'history.pkl', 'wb') as f:
pickle.dump(history.history, f)
title_size_xy = 14
number_size_xy = 11
label_size = 11
text_size = 11
history_dict = history.history
train_loss = history_dict['loss']
validate_loss = history_dict['val_loss']
plt.figure()
plt.plot(range(40), train_loss, label='train_loss')
plt.plot(range(40), validate_loss, label='val_loss')
plt.legend()
plt.xlabel('epochs')
plt.ylabel('loss')
plt.savefig(save_results_path / f'loss.png', bbox_inches='tight')
plt.close()
y_train_predict_0 = best_model.predict(x_train)
y_train_predict_1 = y_train_predict_0 * w_std + w_mean
y_train_predict = np.expand_dims(y_train_predict_1, axis=-1)
y_train = y_train * w_std + w_mean
xy_max = int(np.max([np.max(y_train_predict_1), np.max(y_train)])) + 1000
nse_scores, rmse_scores = [], []
for p in range(forecast_period):
rmse_score = mean_squared_error(y_train_predict[:, p], y_train[:, p], squared=False)
rmse_scores.append(rmse_score)
y_mean = np.mean(y_train[:, p])
y_mean_arr = np.full((y_train[:, p].shape[0], 1), y_mean)
ss_res = mean_squared_error(y_train[:, p], y_train_predict[:, p])
ss_tot = mean_squared_error(y_train[:, p], y_mean_arr)
nse_score = 1 - ss_res / ss_tot
nse_scores.append(nse_score)
rmse_scores = [round(score, 1) for score in rmse_scores]
nse_scores = [round(score, 3) for score in nse_scores]
for p, rmse_score in enumerate(rmse_scores):
print(f"rmse {p + 1}: {rmse_score}")
for p, nse_score in enumerate(nse_scores):
print(f"nse {p + 1}: {nse_score}")
for o in range(forecast_period):
y_train_predict_o = y_train_predict[:, o, :]
y_train_predict_o_1d = np.squeeze(y_train_predict_o)
y_train_o = y_train[:, o, :]
y_train_o_1d = np.squeeze(y_train_o)
plt.figure(figsize=(5, 5), dpi=300)
plt.grid(True, color='lightgray', linewidth=0.3, zorder=0)
parameter = np.polyfit(y_train_o_1d, y_train_predict_o_1d, 1)
x0 = x00 = [0, np.max(y_train_o_1d)]
y0 = [parameter[0] * x0[0] + parameter[1], parameter[0] * x0[1] + parameter[1]]
y00 = x00
plt.scatter(y_train_o_1d, y_train_predict_o_1d, color='cornflowerblue', s=2, label='Flow', zorder=2)
plt.plot(x0, y0, linewidth=1, color='g', linestyle='--', label='Trend line', zorder=1)
plt.plot(x00, y00, linewidth=0.8, color='gray', linestyle='-', label='y=x', zorder=1)
plt.legend(fontsize=label_size, loc='upper left')
k = '%.3f' % parameter[0]
b = '%.3f' % parameter[1]
if float(b) <= 0:
strname = "y=" + k + 'x' + b
else:
strname = "y=" + k + 'x+' + b
r = np.corrcoef(y_train_o_1d, y_train_predict_o_1d)[0, 1]
r2 = r ** 2
r2_text = '%.3f' % r2
r2_text = 'R =' + r2_text
rmse_train_predict = 'rmse = ' + str(rmse_scores[o])
nse_train_predict = 'nse = ' + str(nse_scores[o])
plt.text(0.6 * xy_max, 0.20 * xy_max, strname, fontsize=text_size)
plt.text(0.6 * xy_max, 0.145 * xy_max, r2_text, fontsize=text_size)
plt.text(0.63 * xy_max, 0.17 * xy_max, 2, fontsize=text_size * 0.55)
plt.text(0.6 * xy_max, 0.10 * xy_max, rmse_train_predict, fontsize=text_size)
plt.text(0.6 * xy_max, 0.05 * xy_max, nse_train_predict, fontsize=text_size)
plt.xlim(0, xy_max)
plt.ylim(0, xy_max)
plt.tick_params(labelsize=number_size_xy)
plt.tick_params(pad=5)
plt.xlabel('True flow (m$^3$/s)', fontname='Times New Roman', fontsize=title_size_xy)
plt.ylabel('Predict flow (m$^3$/s)', fontname='Times New Roman', fontsize=title_size_xy)
plt.rc('font', family='Times New Roman')
ax = plt.gca()
ax.xaxis.set_major_locator(ticker.MultipleLocator(2500))
plt.gcf().subplots_adjust(left=0.2, right=0.8, top=0.8, bottom=0.2)
plt.savefig(save_results_path / f'训练集评价{o}.png', bbox_inches='tight')
plt.close()
y_predict_0 = best_model.predict(x_test)
y_predict_1 = y_predict_0 * w_std + w_mean
y_predict = np.expand_dims(y_predict_1, axis=-1)
y_test = y_test * w_std + w_mean
xy_max = int(np.max([np.max(y_predict_1), np.max(y_test)]))+1000
nse_scores, rmse_scores = [], []
for p in range(forecast_period):
rmse_score = mean_squared_error(y_predict[:, p], y_test[:, p], squared=False)
rmse_scores.append(rmse_score)
y_mean = np.mean(y_test[:, p])
y_mean_arr = np.full((y_test[:, p].shape[0], 1), y_mean)
ss_res = mean_squared_error(y_test[:, p], y_predict[:, p])
ss_tot = mean_squared_error(y_test[:, p], y_mean_arr)
nse_score = 1 - ss_res / ss_tot
nse_scores.append(nse_score)
rmse_scores = [round(score, 1) for score in rmse_scores]
nse_scores = [round(score, 3) for score in nse_scores]
for p, rmse_score in enumerate(rmse_scores):
print(f"rmse {p + 1}: {rmse_score}")
for p, nse_score in enumerate(nse_scores):
print(f"nse {p + 1}: {nse_score}")
for m in range(forecast_period):
y_predict_m = y_predict[:, m, :]
y_predict_m_1d = np.squeeze(y_predict_m)
y_test_m = y_test[:, m, :]
y_test_m_1d = np.squeeze(y_test_m)
plt.figure(figsize=(5, 5), dpi=300)
plt.grid(True, color='lightgray', linewidth=0.3, zorder=0)
parameter = np.polyfit(y_test_m_1d, y_predict_m_1d, 1)
x0 = x00 = [0, np.max(y_test_m_1d)]
y0 = [parameter[0] * x0[0] + parameter[1], parameter[0] * x0[1] + parameter[1]]
y00 = x00
plt.scatter(y_test_m_1d, y_predict_m_1d, color='cornflowerblue', s=2, label='Flow', zorder=2)
plt.plot(x0, y0, linewidth=1, color='g', linestyle='--', label='Trend line', zorder=1)
plt.plot(x00, y00, linewidth=0.8, color='gray', linestyle='-', label='y=x', zorder=1)
plt.legend(fontsize=label_size, loc='upper left')
k = '%.3f' % parameter[0]
b = '%.3f' % parameter[1]
if float(b) <= 0:
strname = "y=" + k + 'x' + b
else:
strname = "y=" + k + 'x+' + b
r = np.corrcoef(y_test_m_1d, y_predict_m_1d)[0, 1]
r2 = r**2
r2_text = '%.3f' % r2
r2_text = 'R ='+r2_text
rmse_predict = 'rmse = ' + str(rmse_scores[m])
nse_predict = 'nse = ' + str(nse_scores[m])
plt.text(0.6 * xy_max, 0.20 * xy_max, strname, fontsize=text_size)
plt.text(0.6 * xy_max, 0.145 * xy_max, r2_text, fontsize=text_size)
plt.text(0.63 * xy_max, 0.17 * xy_max, 2, fontsize=text_size * 0.55)
plt.text(0.6 * xy_max, 0.10 * xy_max, rmse_predict, fontsize=text_size)
plt.text(0.6 * xy_max, 0.05 * xy_max, nse_predict, fontsize=text_size)
plt.xlim(0, xy_max)
plt.ylim(0, xy_max)
plt.tick_params(labelsize=number_size_xy)
plt.tick_params(pad=5)
plt.xlabel('True flow (m$^3$/s)', fontname='Times New Roman', fontsize=title_size_xy)
plt.ylabel('Predict flow (m$^3$/s)', fontname='Times New Roman', fontsize=title_size_xy)
plt.rc('font', family='Times New Roman')
ax = plt.gca()
ax.xaxis.set_major_locator(ticker.MultipleLocator(2500))
plt.gcf().subplots_adjust(left=0.2, right=0.8, top=0.8, bottom=0.2)
plt.savefig(save_results_path/f'测试集评价{m}.png', bbox_inches='tight')
plt.close()
for n in range(forecast_period):
y_predict_n = y_predict[:, n, :]
y_predict_n_1d = np.squeeze(y_predict_n)
y_test_n = y_test[:, n, :]
y_test_n_1d = np.squeeze(y_test_n)
fig = plt.figure(figsize=(10, 5), dpi=300)
axes1 = fig.add_subplot(111)
axes2 = axes1.twinx()
axes2.yaxis.tick_right()
axes2.yaxis.set_label_position('right')
scatter_actual = axes1.plot(np.arange(len(y_test_n_1d)) + n, y_test_n_1d, 'o', color='cornflowerblue', label='Actuality', markersize=1)
scatter_predict = axes1.plot(np.arange(len(y_predict_n_1d)) + n, y_predict_n_1d, 'ro', label='Prediction', markersize=1)
bar_rainfall = axes2.bar(np.arange(len(sum_rainfall_test)), sum_rainfall_test, width=0.5, color='lightgray', label='Rainfall')
handles = [scatter_actual[0], scatter_predict[0], bar_rainfall]
labels = ['Actual', 'Predict', 'Rainfall']
axes1.set_xlabel('Number of rainfall/flow records from 2005 to 2007_'+str(n+1), fontname='Times New Roman', fontsize=title_size_xy)
axes1.set_ylabel('Flow (m$^3$/s)', fontname='Times New Roman', fontsize=title_size_xy)
axes1.tick_params(labelsize=number_size_xy)
if forecast_period == 1:
axes1.set_xlim(-20, 620)
axes1.set_xticks(np.arange(0, 601, 50))
elif forecast_period == 3:
axes1.set_xlim(-20, 610)
axes1.set_xticks(np.arange(0, 601, 50))
elif forecast_period == 5:
axes1.set_xlim(-15, 580)
axes1.set_xticks(np.arange(0, 580, 50))
elif forecast_period == 7:
axes1.set_xlim(-20, 560)
axes1.set_xticks(np.arange(0, 551, 50))
axes1.set_ylim(0, 30000)
axes1.set_yticks(np.arange(0, 30001, 5000))
axes2.set_ylabel('Rainfall (mm/48h)', fontname='Times New Roman', fontsize=title_size_xy)
axes2.tick_params(labelsize=number_size_xy)
axes2.set_ylim(400, 0)
axes2.set_yticks(np.arange(400, -1, -50))
plt.legend(handles, labels, fontsize=label_size, loc='center left')
plt.gcf().subplots_adjust(left=0.2, right=0.8, top=0.8, bottom=0.2)
plt.savefig(save_results_path/f'测试散点图{n}.png')
plt.close()
explainer = shap.GradientExplainer(best_model, xx_standardization)
shap_values_0 = explainer.shap_values(xx_standardization)
shap_values_abs = np.abs(np.array(shap_values_0, dtype=np.float32))
sum_shap_values_axis1 = np.sum(shap_values_abs, axis=1)
sum_shap_values_axis2 = np.sum(shap_values_abs, axis=2)
workbook = Workbook()
for i in range(forecast_period):
sheet = workbook.create_sheet(title=f'Sheet{i + 1}')
matrix1 = sum_shap_values_axis1[i]
df1 = pd.DataFrame(matrix1)
for r in dataframe_to_rows(df1, index=False, header=False):
sheet.append(r)
workbook.save(save_results_path / 'sum_shap_values_axis1.xlsx')
workbook.close()
workbook = Workbook()
for i in range(forecast_period):
sheet = workbook.create_sheet(title=f'Sheet{i + 1}')
matrix2 = sum_shap_values_axis2[i]
df2 = pd.DataFrame(matrix2)
for r in dataframe_to_rows(df2, index=False, header=False):
sheet.append(r)
workbook.save(save_results_path / 'sum_shap_values_axis2.xlsx')
workbook.close()