-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpretrain.py
297 lines (212 loc) · 7.88 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import numpy as np
import cudamat as cm
import time
from cudamat import CUDAMatrix as M
n_epoch = 10
n_hidden = 100
init_scale = 1
batch_size = 1000
noise_rate = 0.05
learning_rate = 0.01
momentum = 0.9
def load_layer(filename):
with open(filename) as h:
X = np.load(h)
return X
def load_model(filename='params.bin'):
with open(filename, 'rb') as h:
H = np.load(h)
O = np.load(h) # use untying weights
bh = np.load(h)
bo = np.load(h)
return [H,O,bh,bo]
def save_model(model, filename):
with open(filename, 'wb') as h:
for p in model:
# load from GPU memory
np.save(h, p.asarray())
def activate(X, params, a):
batch_size = X.shape[0]
H, O, bh, bo = params
# a = f( x*H + bh )
X.dot(H, target=a)
a.add_row_vec(bh)
cm.sigmoid(a)
return a
def grad(X, Y, act_type, rho, params, grads, aux):
H, O, bh, bo = params
_H, _O, _bh, _bo = grads
a, z, eh, eo, loss, s, s_m = aux
_H.assign(0.0)
_O.assign(0.0)
_bh.assign(0.0)
_bo.assign(0.0)
# watch out for the redundand accumulations
### FORWARD PASS ###
# a = tanh( x*H + bh )
X.dot(H, target=a)
a.add_row_vec(bh)
cm.sigmoid(a)
# b = sigm( a*O + bo )
#a.dot(H.T, target=z) # use tyied weights
a.dot(O, target=z)
z.add_row_vec(bo)
if act_type == 'logistic':
cm.sigmoid(z) # DEBUG
### BACKWARD PASS ###
# eo = z - y
z.subtract(Y, target=eo)
# eh = sigmoid'(a) x ( eo * O + (rho-1)/(s-1) - rho/s )
eo.dot(O.T, target = eh)
# the following needs to be verified
if rho > 0:
a.sum(axis=0, target=s)
s.mult(1.0/a.shape[0]) # normalize by batch_size
s.reciprocal()
s.mult(rho)
a.sum(axis=0, target=s_m) # TODO: remove this redundancy
s_m.mult(1.0/a.shape[0]) # normalize by batch_size
s_m.subtract(1.0)
s_m.reciprocal()
s_m.mult(rho-1)
s.subtract(s_m)
eh.add_row_mult(s, -1.0)
eh.apply_logistic_deriv(a)
### COMPUTE GRADIENTS ###
_O.add_dot(a.T, eo)
_H.add_dot(X.T, eh)
_bo.add_sums(eo, axis=0)
_bh.add_sums(eh, axis=0)
### COMPUTE ERROR ###
if act_type == 'logistic':
cm.cross_entropy_bernoulli(Y, z, target=loss)
elif act_type == 'linear':
eo.mult(eo, target=loss) #loss.add_mult(eo, eo) # DEBUG
else:
raise ValueError("Activation function '%s' is unknown" % args.act_type)
err = loss.sum()
return err
def pretrain(data, n_hidden, args, model=None):
n_items = data.shape[0]
n_in = n_out = data.shape[1]
n_batches = n_items/batch_size # leave one for validation
if model:
# check model consistency with the current dataset
H,O,bh,bo = model
assert (H.shape[0] == n_in), 'Input matrix shape mismatch'
assert (H.shape[0] == n_out), 'Output matrix shape mismatch'
assert (bo.shape[1] == n_out), 'Bias vector shape mismatch'
n_hidden = H.shape[1]
else:
# initialize a new model
H = np.random.normal( scale=init_scale, size=(n_in, n_hidden))
O = np.random.normal( scale=init_scale, size=(n_hidden, n_out))
#interv = np.sqrt(6.0/(n_in+n_out+1))
#H = np.random.normal( -interv, interv, size=(n_in, n_hidden))
#O = np.random.normal( -interv, interv, size=(n_hidden, n_out))
bh = np.zeros((1,n_hidden))
bo = np.zeros((1,n_out))
H = M(H)
O = M(O)
bh = M(bh)
bo = M(bo)
X = cm.empty((batch_size, n_in))
Y = cm.empty((batch_size, n_out))
params = [H, O, bh, bo]
_H = M(np.zeros(H.shape))
_O = M(np.zeros(O.shape))
_bh = M(np.zeros(bh.shape))
_bo = M(np.zeros(bo.shape))
grads = [_H, _O, _bh, _bo]
a = M(np.zeros((batch_size, n_hidden)))
z = cm.empty((batch_size, n_out))
eh = M(np.zeros((batch_size, n_hidden)))
eo = M(np.zeros((batch_size, n_out)))
loss = M(np.zeros(Y.shape))
# terms for calculting sparse penalty
s = cm.empty((1, n_hidden))
s_m = cm.empty((1, n_hidden))
aux = [a, z, eh, eo, loss, s, s_m]
# whiten, DEBUG!
# from scipy.cluster.vq import whiten
# data = whiten(data)
X_val = M(data[(n_batches-1)*batch_size: n_batches*batch_size])
### TRAINING ###
for epoch in range(n_epoch):
err = []
t0 = time.clock()
for i in range(n_batches-1):
s = slice(i*batch_size, (i+1)*batch_size)
X.overwrite(data[s])
if args.noise_rate > 0:
Y.overwrite(data[s])
Y.dropout(args.noise_rate)
else:
Y = X
# apply momentum
for g in grads:
g.mult(momentum)
cost = grad(X, Y, args.act_type, args.sparse, params, grads, aux)
# update parameters
for p,g in zip(params, grads):
p.subtract_mult(g, mult=learning_rate) #/(batch_size))
err.append(cost/(batch_size))
# measure the reconstruction error
v_err = grad(X_val, X_val, args.act_type, args.sparse, params, grads, aux)
print "Epoch: %d, Loss: %.8f, VLoss: %.8f, Time: %.4fs" % (
epoch, np.mean( err ),
v_err/batch_size,
time.clock()-t0 )
if args.out:
save_model(params, args.out)
### STORE ACTICATION VECTORS ###
if args.activations:
A = np.zeros((data.shape[0], n_hidden))
for i in range(n_batches):
s = slice(i*batch_size, (i+1)*batch_size)
X.overwrite(data[s])
activate(X, params, a)
A[s] = a.asarray()
with open(args.activations, 'wb') as h:
print "Saving the activation vectors to: %s, shape: %s, %s " % \
(args.activations, A.shape[0], A.shape[1])
np.save(h, A)
return params
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--filename', default='corpus.bin', help='data file')
parser.add_argument('-o', '--out', default='params.bin', help='file to store parameters')
parser.add_argument('-a', '--activations', default=None, help='file to store activation vectors')
parser.add_argument('-m', '--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('-l', '--learning_rate', type=float, default=0.01, help='learning rate')
parser.add_argument('-b', '--batch_size', type=int, default=100, help='batch size')
parser.add_argument('-x', '--hidden', type=int, default=100, help='number of hidden units')
parser.add_argument('-e', '--epoch', type=int, default=10, help='number of epochs')
parser.add_argument('-c', '--continue', dest='cont',
action='store_true', default=False, help='continue with the model')
parser.add_argument('-n', '--noise_rate', type=float, default=0.0, help='specify the curruption rate')
parser.add_argument('-ah', '--act_type', default='linear', choices=['linear', 'logistic'], help='')
parser.add_argument('-s', '--sparse', type=float, default=0.0, help='add sparse penalty')
args = parser.parse_args()
momentum = args.momentum
learning_rate = args.learning_rate
batch_size = args.batch_size
n_hidden = args.hidden
n_epoch = args.epoch
noise_rate = args.noise_rate
X = load_layer(args.filename)
# cudamat fix for large matrix summations
if cm.MAX_ONES < batch_size*X.shape[1]:
print "Warning: extending cudamat 'ones' size"
cm.MAX_ONES = batch_size*X.shape[1]
cm.cublas_init()
M.init_random()
prev_model = None
if args.cont:
print "Ignoring -x parameter"
prev_model = load_model(args.out)
M.init_random()
model = pretrain(X, n_hidden, args, prev_model)
print "Saving model to:", args.out
save_model(model, args.out)