-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprep_cifar10.py
81 lines (62 loc) · 1.79 KB
/
prep_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cPickle
import numpy as np
cdir = './cifar-10-batches-py/'
def pool(X, m, n, k, l, C):
'''
Perfrom edge-aware pooling with stride equal 1.
Return 'm-n+1' by 'n-m+1' matrix.
Note: It's not super fast. But since it's run-once code
let it be that way for now.
'''
for i in xrange(k):
for j in xrange(l):
C[i,j] = np.sum(X[i:i+m, j:j+n])
return C
def conv(x, m, n):
k,l = 32-m+1, 32-n+1
n_img = x.shape[0]
x.shape = (n_img, 3, 32, 32)
xconv = np.zeros((n_img, 3, k, l), dtype=np.uint)
C = np.zeros((k, l), dtype=np.uint)
for i in range(n_img):
for c in range(3): # colors
xconv[i,c] = pool(x[i,c], m, n, k, l, C)
xconv.shape = (n_img, 3*k*l)
return xconv/(m*n)
def one_hot_enc(x):
x_shape = len(x)
y = np.zeros((x_shape, np.max(x)+1)).astype(np.int8)
for i in range(x_shape):
y[i,x[i]] = 1
return y
if __name__ == '__main__':
with open(cdir + 'data_batch_1','rb') as h:
b1 = cPickle.load(h)
with open(cdir + 'data_batch_2','rb') as h:
b2 = cPickle.load(h)
with open(cdir + 'data_batch_3','rb') as h:
b3 = cPickle.load(h)
with open(cdir + 'data_batch_4','rb') as h:
b4 = cPickle.load(h)
with open(cdir + 'data_batch_5','rb') as h:
b5 = cPickle.load(h)
data = np.vstack([
b1['data'],
b2['data'],
b3['data'],
b4['data'],
b5['data']
])
labels = np.concatenate([
b1['labels'],
b2['labels'],
b3['labels'],
b4['labels'],
b5['labels']
])
l0 = conv(data, 5, 5)/255.0
print l0.shape
with open('l0.bin', 'wb') as h:
np.save(h, l0)
with open('labels.bin', 'wb') as h:
np.save(h, one_hot_enc(labels))