|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | +from torch.autograd import Variable |
| 4 | +from torch import optim |
| 5 | +import torchvision.datasets as dset |
| 6 | +import torchvision.transforms as transforms |
| 7 | +import torchvision.utils as vutils |
| 8 | +import pickle |
| 9 | + |
| 10 | +# Settings |
| 11 | +batchSize = 16 |
| 12 | +imageSize = 64 |
| 13 | +z_dim = 64 |
| 14 | +n_channels = 3 |
| 15 | +conv_hidden_num = 64 |
| 16 | +outf="./results" |
| 17 | + |
| 18 | +# Import Dataset |
| 19 | +des_dir = "./korCeleb64/" |
| 20 | + |
| 21 | +dataset = dset.ImageFolder(root=des_dir, |
| 22 | + transform=transforms.Compose([ |
| 23 | + transforms.Scale(imageSize), |
| 24 | + transforms.ToTensor(), |
| 25 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
| 26 | + ])) |
| 27 | + |
| 28 | +dataloader = torch.utils.data.DataLoader(dataset, |
| 29 | + batch_size= batchSize, |
| 30 | + shuffle=True) |
| 31 | + |
| 32 | +# Design Discriminator in AutoEncoder-manner |
| 33 | +class Discriminator(nn.Module): |
| 34 | + def __init__(self): |
| 35 | + super(Discriminator,self).__init__() |
| 36 | + |
| 37 | + # encoder |
| 38 | + self.conv1 = nn.Sequential( |
| 39 | + |
| 40 | + nn.Conv2d(n_channels,conv_hidden_num,3,1,1), |
| 41 | + |
| 42 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 43 | + nn.ELU(True), |
| 44 | + nn.Conv2d(conv_hidden_num,2*conv_hidden_num,3,2,1), |
| 45 | + nn.ELU(True), |
| 46 | + nn.MaxPool2d(2), |
| 47 | + |
| 48 | + nn.Conv2d(2*conv_hidden_num,2*conv_hidden_num,3,1,1), |
| 49 | + nn.ELU(True), |
| 50 | + nn.Conv2d(2*conv_hidden_num,3*conv_hidden_num,3,2,1), |
| 51 | + nn.ELU(True), |
| 52 | + nn.MaxPool2d(2), |
| 53 | + |
| 54 | + nn.Conv2d(3*conv_hidden_num,3*conv_hidden_num,3,1,1), |
| 55 | + nn.ELU(True), |
| 56 | + nn.Conv2d(3*conv_hidden_num,3*conv_hidden_num,3,1,1), |
| 57 | + nn.ELU(True) |
| 58 | + |
| 59 | + ) |
| 60 | + |
| 61 | + self.fc1 = nn.Linear(4*4*3*conv_hidden_num,z_dim) |
| 62 | + |
| 63 | + # decoder |
| 64 | + self.fc2 = nn.Linear(z_dim,16*16*conv_hidden_num) |
| 65 | + self.conv2 = nn.Sequential( |
| 66 | + |
| 67 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 68 | + nn.ELU(True), |
| 69 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 70 | + nn.ELU(True), |
| 71 | + nn.UpsamplingNearest2d(scale_factor=2), |
| 72 | + |
| 73 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 74 | + nn.ELU(True), |
| 75 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 76 | + nn.UpsamplingNearest2d(scale_factor=2), |
| 77 | + |
| 78 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 79 | + nn.ELU(True), |
| 80 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 81 | + nn.ELU(True), |
| 82 | + |
| 83 | + nn.Conv2d(conv_hidden_num,3,3,1,1) |
| 84 | + ) |
| 85 | + |
| 86 | + |
| 87 | + def forward(self,x): |
| 88 | + |
| 89 | + # through encoder conv-layer |
| 90 | + conv = self.conv1(x) |
| 91 | + # embedding via encoder |
| 92 | + embedding = self.fc1(conv.view(-1,3*conv_hidden_num*4*4)) |
| 93 | + # reconstructing img via decoder |
| 94 | + reconst = self.conv2(self.fc2(embedding).view(-1,conv_hidden_num,16,16)) |
| 95 | + return embedding, reconst |
| 96 | + |
| 97 | +# Design Generator - the same structure with decoder of discriminator |
| 98 | +class Generator(nn.Module): |
| 99 | + def __init__(self): |
| 100 | + super(Generator,self).__init__() |
| 101 | + self.fc = nn.Linear(z_dim,16*16*conv_hidden_num) |
| 102 | + self.conv = nn.Sequential( |
| 103 | + |
| 104 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 105 | + nn.ELU(True), |
| 106 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 107 | + nn.ELU(True), |
| 108 | + nn.UpsamplingNearest2d(scale_factor=2), |
| 109 | + |
| 110 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 111 | + nn.ELU(True), |
| 112 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 113 | + nn.ELU(True), |
| 114 | + nn.UpsamplingNearest2d(scale_factor=2), |
| 115 | + |
| 116 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 117 | + nn.ELU(True), |
| 118 | + nn.Conv2d(conv_hidden_num,conv_hidden_num,3,1,1), |
| 119 | + nn.ELU(True), |
| 120 | + |
| 121 | + nn.Conv2d(conv_hidden_num,3,3,1,1) |
| 122 | + ) |
| 123 | + |
| 124 | + def forward(self,x): |
| 125 | + x = self.fc(x) |
| 126 | + x = x.view(-1,conv_hidden_num,16,16) |
| 127 | + out = self.conv(x) |
| 128 | + return out |
| 129 | + |
| 130 | +# make instances of network |
| 131 | +discriminator = Discriminator() |
| 132 | +generator = Generator() |
| 133 | + |
| 134 | +# weight initialization |
| 135 | +def weights_init(m): |
| 136 | + classname = m.__class__.__name__ |
| 137 | + if classname.find('Conv') != -1: |
| 138 | + m.weight.data.normal_(0.0, 0.02) |
| 139 | + elif classname.find('BatchNorm') != -1: |
| 140 | + m.weight.data.normal_(1.0, 0.02) |
| 141 | + m.bias.data.fill_(0) |
| 142 | + |
| 143 | +discriminator.apply(weights_init) |
| 144 | +generator.apply(weights_init) |
| 145 | + |
| 146 | +# activate cuda |
| 147 | +discriminator.cuda() |
| 148 | +generator.cuda() |
| 149 | + |
| 150 | +# set optimizer and loss criterion |
| 151 | +lr = 1e-5 # needs to be reduced in case of modal collapse |
| 152 | +D_optimizer = optim.Adam(discriminator.parameters(),lr=lr, betas=(0.5, 0.999)) |
| 153 | +G_optimizer = optim.Adam(generator.parameters(),lr=lr, betas=(0.5, 0.999)) |
| 154 | + |
| 155 | +criterion = nn.L1Loss().cuda() |
| 156 | + |
| 157 | +# lists to track training history |
| 158 | +D_losses =[] |
| 159 | +G_losses =[] |
| 160 | +D_real_losses = [] |
| 161 | +D_fake_losses = [] |
| 162 | +measurements = [] |
| 163 | +k_ts = [] |
| 164 | +result_dict = {} |
| 165 | + |
| 166 | +# set parameters of BEGAN |
| 167 | +k_t = 0 |
| 168 | +gamma = 0.75 |
| 169 | +lambda_k = 0.0001 |
| 170 | + |
| 171 | + |
| 172 | +# fixed noise to check out |
| 173 | +fixed_noise = Variable(torch.FloatTensor(batchSize*z_dim).uniform_(-1,1)).view(batchSize,z_dim).cuda() |
| 174 | + |
| 175 | +# train |
| 176 | +for epoch in range(50000): |
| 177 | + |
| 178 | + fake_ = generator(fixed_noise) |
| 179 | + vutils.save_image(fake_.data,"{}/generated_img_{}_epoch.png".format(outf,format(epoch,"0>5"))) |
| 180 | + |
| 181 | + for step,(data,_) in enumerate(dataloader): |
| 182 | + n_inputs = data.size()[0] |
| 183 | + |
| 184 | + D_optimizer = optim.Adam(discriminator.parameters(),lr=lr, betas=(0.5, 0.999)) |
| 185 | + G_optimizer = optim.Adam(generator.parameters(),lr=lr, betas=(0.5, 0.999)) |
| 186 | + |
| 187 | + # gradient init as zero |
| 188 | + discriminator.zero_grad() |
| 189 | + generator.zero_grad() |
| 190 | + |
| 191 | + # update optimizer |
| 192 | + X_v = Variable(data).cuda() |
| 193 | + |
| 194 | + # put real-image through discriminator |
| 195 | + D_real_embedding, D_real_reconst = discriminator(X_v) |
| 196 | + D_real_loss = criterion(D_real_reconst,X_v) |
| 197 | + |
| 198 | + # put fake-image through generator |
| 199 | + noise = Variable(torch.FloatTensor(n_inputs*z_dim).uniform_(-1,1)).view(n_inputs,z_dim).cuda() |
| 200 | + fake = generator(noise) |
| 201 | + |
| 202 | + D_fake_embedding, D_fake_reconst = discriminator(fake.detach()) |
| 203 | + D_fake_loss_d = criterion(D_fake_reconst,fake.detach()) |
| 204 | + D_fake_loss_g = criterion(fake,D_fake_reconst.detach()) |
| 205 | + |
| 206 | + # calculate loss |
| 207 | + D_loss = D_real_loss - k_t*D_fake_loss_d |
| 208 | + G_loss = D_fake_loss_g |
| 209 | + |
| 210 | + # backprop & update network |
| 211 | + D_loss.backward() |
| 212 | + G_loss.backward() |
| 213 | + |
| 214 | + D_optimizer.step() |
| 215 | + G_optimizer.step() |
| 216 | + |
| 217 | + # update k_t |
| 218 | + k_t += lambda_k*(gamma*D_loss.data[0] - G_loss.data[0]) |
| 219 | + k_t = max(min(k_t,1),0) |
| 220 | + |
| 221 | + # Calculate Convergence Measurement |
| 222 | + M = D_loss + torch.abs(gamma*D_loss - G_loss) |
| 223 | + |
| 224 | + if step%100 == 0: |
| 225 | + print('[%d/%d][%d/%d] D_loss: %.4f G_loss: %.4f D_real_loss: %.4f D_fake_loss: %.4f M: %.4f k: %5f' |
| 226 | + % (epoch, 10000, step, len(dataloader), |
| 227 | + D_loss.data[0], G_loss.data[0], D_real_loss.data[0], D_fake_loss_d.data[0], |
| 228 | + M.data[0], k_t)) |
| 229 | + # save losses and scores |
| 230 | + D_losses.append(D_loss.data[0]) |
| 231 | + G_losses.append(G_loss.data[0]) |
| 232 | + D_real_losses.append(D_real_loss.data[0]) |
| 233 | + D_fake_losses.append(D_fake_loss_d.data[0]) |
| 234 | + measurements.append(M.data[0]) |
| 235 | + k_ts.append(k_t) |
| 236 | + |
| 237 | + result_dict["D_losses"] = D_losses |
| 238 | + result_dict["G_losses"] = G_losses |
| 239 | + result_dict["D_real_losses"] = D_real_losses |
| 240 | + result_dict["D_fake_losses"] = D_fake_losses |
| 241 | + result_dict["measurements"] = measurements |
| 242 | + result_dict["k_ts"] = k_ts |
| 243 | + |
| 244 | + pickle.dump(result_dict,open("{}/result_dict.p".format(outf),"wb")) |
| 245 | + if epoch<5: |
| 246 | + # save fixed img |
| 247 | + fake_ = generator(fixed_noise) |
| 248 | + vutils.save_image(fake_.data,"{}/generated_img_{}_epoch_{}_step.png".format(outf,format(epoch,"0>5"),step)) |
| 249 | + if (epoch+1)%100 ==0: |
| 250 | + lr *= 0.955 |
| 251 | + lr = max(lr,1e-7) |
| 252 | + # save model |
| 253 | + torch.save(discriminator.state_dict(),"D_epoch_{}.pth".format(epoch)) |
| 254 | + torch.save(generator.state_dict(),"G_epoch_{}.pth".format(epoch)) |
0 commit comments