-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
196 lines (165 loc) · 6.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Standard library imports
import logging
from typing import Annotated
# Third-party imports
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
# Local imports
from src.model.model import OneDCNN
from src.feature.normalization import Normalize
from src.utils.log.manager import LoggerManager
from src.utils.data.manager import DataManager, DatasetLoader
from src.feature.segmentation import OverlapSegment
from src.model.train import Trainer, InverseFrequencyClassWeighting
def main() -> Annotated[None, "This function does not return anything"]:
"""
Load configuration from a YAML file, set up data, train specified
model, and evaluate the final test performance.
Returns
-------
None
This function does not return anything.
Examples
--------
>>> main()
Initialize data managers, set up loaders, train the model, and
evaluate its performance on the test set.
"""
# Configuration
config_path = "config/config.yaml"
config = OmegaConf.load(config_path)
device = config.device.type
batch_size = config.train.onedcnn.training.batch
model = OneDCNN(config.train.onedcnn.model).to(device)
trainer_config = config.train.onedcnn.training
overlap_segment_config = config.data.segment.overlap
window_size = overlap_segment_config.window
step_size = overlap_segment_config.step
# Initialize classes
logger = LoggerManager(console_level=logging.INFO).get_logger()
data_manager = DataManager(
signals_path=config.paths.signals,
labels_path=config.paths.labels,
csv_path=config.paths.csv,
data_dir=config.paths.data,
max_length=config.data.length,
label_map=dict(config.data.labels),
logger=logger
)
# Data split & load
all_signals_np, all_labels_np = data_manager.load_data()
logger.info(
f"Main train data shape: {all_signals_np.shape}, {all_labels_np.shape}"
)
x_temp, x_test, y_temp, y_test = train_test_split(
all_signals_np,
all_labels_np,
test_size=config.data.splits.test,
stratify=all_labels_np,
random_state=config.data.splits.state
)
x_train, x_val, y_train, y_val = train_test_split(
x_temp,
y_temp,
test_size=config.data.splits.validation,
stratify=y_temp,
random_state=config.data.splits.state
)
logger.info(f"Train shape: {x_train.shape}, {y_train.shape}")
logger.info(f"Validation shape: {x_val.shape}, {y_val.shape}")
logger.info(f"Test shape: {x_test.shape}, {y_test.shape}")
# Segmentation
logger.info(f"Using OverlapSegment => window={window_size}, step={step_size}")
overlap_seg = OverlapSegment(
window=window_size,
step=step_size,
pad=True
)
x_train_seg, y_train_seg = overlap_seg.overlap_split(x_train, y_train)
x_val_seg, y_val_seg = overlap_seg.overlap_split(x_val, y_val)
x_test_seg, y_test_seg = overlap_seg.overlap_split(x_test, y_test)
logger.info(
f"[Overlap] Train={x_train_seg.shape}, Val={x_val_seg.shape}, Test={x_test_seg.shape}"
)
# Normalization
normalizer = Normalize(logger=logger)
x_train_peak = normalizer.peak(x_train_seg)
x_val_peak = normalizer.peak(x_val_seg)
x_test_peak = normalizer.peak(x_test_seg)
global_mean = float(np.mean(x_train_peak))
global_std = float(np.std(x_train_peak))
x_train_norm = normalizer.zscore(
x_train_peak,
mode='global',
global_mean=global_mean,
global_std=global_std
)
x_val_norm = normalizer.zscore(
x_val_peak,
mode='global',
global_mean=global_mean,
global_std=global_std
)
x_test_norm = normalizer.zscore(
x_test_peak,
mode='global',
global_mean=global_mean,
global_std=global_std
)
train_dataset = DatasetLoader(x_train_norm, y_train_seg)
val_dataset = DatasetLoader(x_val_norm, y_val_seg)
test_dataset = DatasetLoader(x_test_norm, y_test_seg)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Inverse-Frequency Class Weighting & Loss
unique_classes = np.unique(y_train_seg)
num_classes = len(unique_classes)
class_counts = [np.sum(y_train == c) for c in unique_classes]
logger.info(f"Class distributions (train): {class_counts}")
ifcw = InverseFrequencyClassWeighting(
y_train=y_train_seg,
num_classes=num_classes
)
class_weights_tensor = ifcw.get_weight_tensor(device=device)
logger.info(f"Class weights (tensor) => {class_weights_tensor}")
criterion = nn.CrossEntropyLoss(weight=class_weights_tensor)
logger.info("CrossEntropyLoss created (with Inverse-Frequency Weighting)")
# Optimizer
optimizer_cls = getattr(optim, trainer_config.optimizer)
optimizer = optimizer_cls(model.parameters(), lr=trainer_config.lr)
logger.info(f"Optimizer: {trainer_config.optimizer}, lr={trainer_config.lr}")
# Train
trainer = Trainer(
model=model,
train_loader=train_loader,
criterion=criterion,
optimizer=optimizer,
device=device,
num_epochs=trainer_config.epochs,
targets=list(config.data.targets),
val_loader=val_loader,
test_loader=test_loader,
logger=logger,
plot_metrics=True,
save_plot=True,
plot_confusion_matrix=True,
save_confusion_matrix=True,
early_stopping=False,
plot_roc=True,
save_roc=True,
)
logger.info("Training is starting...")
torch.autograd.set_detect_anomaly(True)
trainer.run()
# Final test evaluation
logger.info("=== Final Test Evaluation ===")
trainer.evaluate(-1, test_loader, mode="Test")
logger.info("=== Completed. ===")
if __name__ == "__main__":
main()