-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSmartSeq2SingleSample.wdl
207 lines (182 loc) · 7.12 KB
/
SmartSeq2SingleSample.wdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
version 1.0
import "tasks/HISAT2.wdl" as HISAT2
import "tasks/Picard.wdl" as Picard
import "tasks/RSEM.wdl" as RSEM
import "tasks/GroupMetricsOutputs.wdl" as GroupQCs
import "tasks/LoomUtils.wdl" as LoomUtils
workflow SmartSeq2SingleSample {
meta {
description: "Process SmartSeq2 scRNA-Seq data, include reads alignment, QC metrics collection, and gene expression quantitication"
}
input {
# load annotation
File genome_ref_fasta
File rrna_intervals
File gene_ref_flat
# load index
File hisat2_ref_index
File hisat2_ref_trans_index
File rsem_ref_index
# ref index name
String hisat2_ref_name
String hisat2_ref_trans_name
# samples
String stranded
String input_id
String? input_name
String? input_id_metadata_field
String? input_name_metadata_field
String output_name
File fastq1
File? fastq2
Boolean paired_end
}
# version of this pipeline
String pipeline_version = "5.1.20"
parameter_meta {
genome_ref_fasta: "Genome reference in fasta format"
rrna_intervals: "rRNA interval file required by Picard"
gene_ref_flat: "Gene refflat file required by Picard"
hisat2_ref_index: "HISAT2 reference index file in tarball"
hisat2_ref_trans_index: "HISAT2 transcriptome index file in tarball"
rsem_ref_index: "RSEM reference index file in tarball"
hisat2_ref_name: "HISAT2 reference index name"
hisat2_ref_trans_name: "HISAT2 transcriptome index file name"
stranded: "Library strand information example values: FR RF NONE"
input_id: "Sample name or cell_names"
input_id_metadata_field: "String that describes the metadata field containing the input_id"
input_name: "User provided sample name or cell_names"
input_name_metadata_field: "String that describes the metadata field containing input_name"
output_name: "Output name, can include path"
fastq1: "R1 in paired end reads"
fastq2: "R2 in paired end reads"
paired_end: "Boolean flag denoting if the sample is paired end or not"
}
String quality_control_output_basename = output_name + "_qc"
if( paired_end ) {
call HISAT2.HISAT2PairedEnd {
input:
hisat2_ref = hisat2_ref_index,
fastq1 = fastq1,
fastq2 = select_first([fastq2]),
ref_name = hisat2_ref_name,
input_id = input_id,
output_basename = quality_control_output_basename,
}
}
if( !paired_end ) {
call HISAT2.HISAT2SingleEnd {
input:
hisat2_ref = hisat2_ref_index,
fastq = fastq1,
ref_name = hisat2_ref_name,
input_id = input_id,
output_basename = quality_control_output_basename,
}
}
File HISAT2_output_bam = select_first([ HISAT2PairedEnd.output_bam, HISAT2SingleEnd.output_bam] )
File HISAT2_bam_index = select_first([ HISAT2PairedEnd.bam_index, HISAT2SingleEnd.bam_index] )
File HISAT2_log_file = select_first([ HISAT2PairedEnd.log_file, HISAT2SingleEnd.log_file] )
call Picard.CollectMultipleMetrics {
input:
aligned_bam = HISAT2_output_bam,
genome_ref_fasta = genome_ref_fasta,
output_basename = quality_control_output_basename,
}
call Picard.CollectRnaMetrics {
input:
aligned_bam = HISAT2_output_bam,
ref_flat = gene_ref_flat,
rrna_intervals = rrna_intervals,
output_basename = quality_control_output_basename,
stranded = stranded,
}
call Picard.CollectDuplicationMetrics {
input:
aligned_bam = HISAT2_output_bam,
output_basename = quality_control_output_basename,
}
String data_output_basename = output_name + "_rsem"
if( paired_end ) {
call HISAT2.HISAT2RSEM as HISAT2Transcriptome {
input:
hisat2_ref = hisat2_ref_trans_index,
fastq1 = fastq1,
fastq2 = fastq2,
ref_name = hisat2_ref_trans_name,
input_id = input_id,
output_basename = data_output_basename,
}
}
if( !paired_end ) {
call HISAT2.HISAT2RSEMSingleEnd as HISAT2SingleEndTranscriptome {
input:
hisat2_ref = hisat2_ref_trans_index,
fastq = fastq1,
ref_name = hisat2_ref_trans_name,
input_id = input_id,
output_basename = data_output_basename,
}
}
File HISAT2RSEM_output_bam = select_first([ HISAT2Transcriptome.output_bam, HISAT2SingleEndTranscriptome.output_bam] )
File HISAT2RSEM_log_file = select_first([ HISAT2Transcriptome.log_file, HISAT2SingleEndTranscriptome.log_file] )
call RSEM.RSEMExpression {
input:
trans_aligned_bam = HISAT2RSEM_output_bam,
rsem_genome = rsem_ref_index,
output_basename = data_output_basename,
is_paired = paired_end
}
Array[File] picard_row_outputs = [CollectMultipleMetrics.alignment_summary_metrics,CollectDuplicationMetrics.dedup_metrics,CollectRnaMetrics.rna_metrics,CollectMultipleMetrics.gc_bias_summary_metrics]
# This output only exists for PE and select_first fails if array is empty
if ( length(CollectMultipleMetrics.insert_size_metrics) > 0 ) {
File? picard_row_optional_outputs = select_first(CollectMultipleMetrics.insert_size_metrics)
}
Array[File] picard_table_outputs = [
CollectMultipleMetrics.base_call_dist_metrics,
CollectMultipleMetrics.gc_bias_detail_metrics,
CollectMultipleMetrics.pre_adapter_details_metrics,
CollectMultipleMetrics.pre_adapter_summary_metrics,
CollectMultipleMetrics.bait_bias_detail_metrics,
CollectMultipleMetrics.error_summary_metrics,
]
call GroupQCs.GroupQCOutputs {
input:
picard_row_outputs = picard_row_outputs,
picard_row_optional_outputs = select_all(CollectMultipleMetrics.insert_size_metrics),
picard_table_outputs = picard_table_outputs,
hisat2_stats = HISAT2_log_file,
hisat2_trans_stats = HISAT2RSEM_log_file,
rsem_stats = RSEMExpression.rsem_cnt,
output_name = output_name
}
call LoomUtils.SmartSeq2LoomOutput {
input:
rsem_gene_results = RSEMExpression.rsem_gene,
smartseq_qc_files = GroupQCOutputs.group_files,
input_id=input_id,
input_name = input_name,
pipeline_version = "SmartSeq2SingleSample_v~{pipeline_version}",
input_id_metadata_field = input_id_metadata_field,
input_name_metadata_field = input_name_metadata_field
}
output {
# version of this pipeline
String pipeline_version_out = pipeline_version
# quality control outputs
File aligned_bam = HISAT2_output_bam
File bam_index = HISAT2_bam_index
File? insert_size_metrics = picard_row_optional_outputs
File quality_distribution_metrics = CollectMultipleMetrics.quality_distribution_metrics
File quality_by_cycle_metrics = CollectMultipleMetrics.quality_by_cycle_metrics
File bait_bias_summary_metrics = CollectMultipleMetrics.bait_bias_summary_metrics
File rna_metrics = CollectRnaMetrics.rna_metrics # check this
Array[File] group_results = GroupQCOutputs.group_files # check this
# data outputs
File aligned_transcriptome_bam = HISAT2RSEM_output_bam
File rsem_gene_results = RSEMExpression.rsem_gene
File rsem_isoform_results = RSEMExpression.rsem_isoform
# loom
File loom_output_files = SmartSeq2LoomOutput.loom_output
}
}