-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
61 lines (52 loc) · 1.42 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pandas as pd
import numpy as np
import pickle
from collections import defaultdict
raw_input = {
"person_age":24,
"person_income":168000,
"person_home_ownership":"MORTGAGE",
"person_emp_length":0.0,
"loan_intent":"PERSONAL",
"loan_grade":"E",
"loan_amnt":25000,
"loan_int_rate":16.45,
"loan_percent_income":0.15,
"cb_person_default_on_file":"N",
"cb_person_cred_hist_length":3
}
with open("xgb_piped_preps_only", "rb") as f:
fe_pipe = pickle.load(f)
with open("xgb_piped_model_only", "rb") as f:
model_pipe = pickle.load(f)
def formatting_data(raw_input):
raw_input = pd.DataFrame.from_dict(raw_input, orient='index').T.replace({
None : np.nan,
"null": np.nan,
"": np.nan
})
return raw_input
def preprocess(data):
result = fe_pipe.transform(data)
return result
def make_predictions(data):
data = formatting_data(data)
data = preprocess(data)
pred = model_pipe.predict(data)
proba = model_pipe.predict_proba(data)
if pred == 0:
pred = "Non-default"
proba = f"{round(proba[0][0]*100, 2)}%"
print(proba, pred)
result = {"data" : [ {'proba' : proba, 'pred' : pred}]}
return result
else:
pred = "Default"
proba = f"{round(proba[0][1]*100, 2)}%"
print(proba, pred)
result = {"data" : [ {'proba' : proba, 'pred' : pred}]}
return result
if __name__ == "__main__":
result = make_predictions(raw_input)
print(type(result))
print(result)