@@ -464,7 +464,7 @@ <h3>Preprocessing<a class="headerlink" href="#preprocessing" title="Permalink to
464
464
< a href ="../generated/braindecode.preprocessing.preprocess.html#braindecode.preprocessing.preprocess " title ="braindecode.preprocessing.preprocess " class ="sphx-glr-backref-module-braindecode-preprocessing sphx-glr-backref-type-py-function "> < span class ="n "> preprocess</ span > </ a > < span class ="p "> (</ span > < a href ="../generated/braindecode.datasets.BaseConcatDataset.html#braindecode.datasets.BaseConcatDataset " title ="braindecode.datasets.BaseConcatDataset " class ="sphx-glr-backref-module-braindecode-datasets sphx-glr-backref-type-py-class sphx-glr-backref-instance "> < span class ="n "> test_set</ span > </ a > < span class ="p "> ,</ span > < span class ="p "> [</ span > < a href ="../generated/braindecode.preprocessing.Preprocessor.html#braindecode.preprocessing.Preprocessor " title ="braindecode.preprocessing.Preprocessor " class ="sphx-glr-backref-module-braindecode-preprocessing sphx-glr-backref-type-py-class "> < span class ="n "> Preprocessor</ span > </ a > < span class ="p "> (</ span > < span class ="s1 "> 'crop'</ span > < span class ="p "> ,</ span > < span class ="n "> tmin</ span > < span class ="o "> =</ span > < span class ="mi "> 0</ span > < span class ="p "> ,</ span > < span class ="n "> tmax</ span > < span class ="o "> =</ span > < span class ="mi "> 24</ span > < span class ="p "> )])</ span >
465
465
</ pre > </ div >
466
466
</ div >
467
- < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > <braindecode.datasets.base.BaseConcatDataset object at 0x7fc5d5d08090 >
467
+ < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > <braindecode.datasets.base.BaseConcatDataset object at 0x7f8c9e409f50 >
468
468
</ pre > </ div >
469
469
</ div >
470
470
< p > In time series targets setup, targets variables are stored in mne.Raw object as channels
@@ -691,14 +691,14 @@ <h2>Training<a class="headerlink" href="#training" title="Permalink to this head
691
691
warnings.warn(warning_msg, SkorchWarning)
692
692
epoch r2_train r2_valid train_loss valid_loss lr dur
693
693
------- ---------- ---------- ------------ ------------ ------ ------
694
- 1 -16.9064 -8.3116 2.5378 20.7385 0.0006 1.7719
695
- 2 -13.7579 -7.1286 1.9596 18.0806 0.0006 1.5010
696
- 3 -12.7813 -6.7445 1.6787 17.1950 0.0005 1.4806
697
- 4 -11.8017 -6.3939 1.5638 16.4455 0.0004 1.4700
698
- 5 -11.2758 -6.1864 1.4237 16.0128 0.0002 1.4742
699
- 6 -10.5777 -5.9225 1.3549 15.4464 0.0001 1.4713
700
- 7 -9.8264 -5.6200 1.3132 14.7823 0.0000 1.4785
701
- 8 -9.0673 -5.3063 1.3316 14.0904 0.0000 1.4664
694
+ 1 -16.9064 -8.3116 2.5378 20.7385 0.0006 1.6250
695
+ 2 -13.7579 -7.1286 1.9596 18.0806 0.0006 1.4415
696
+ 3 -12.7813 -6.7445 1.6787 17.1950 0.0005 1.4142
697
+ 4 -11.8017 -6.3939 1.5638 16.4455 0.0004 1.4135
698
+ 5 -11.2758 -6.1864 1.4237 16.0128 0.0002 1.4191
699
+ 6 -10.5777 -5.9225 1.3549 15.4464 0.0001 1.4107
700
+ 7 -9.8264 -5.6200 1.3132 14.7823 0.0000 1.4050
701
+ 8 -9.0673 -5.3063 1.3316 14.0904 0.0000 1.4084
702
702
</ pre > </ div >
703
703
</ div >
704
704
< p > Obtaining predictions and targets for the test, train, and validation dataset</ p >
@@ -809,8 +809,8 @@ <h2>Plot Results<a class="headerlink" href="#plot-results" title="Permalink to t
809
809
< a href ="https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.tight_layout.html#matplotlib.pyplot.tight_layout " title ="matplotlib.pyplot.tight_layout " class ="sphx-glr-backref-module-matplotlib-pyplot sphx-glr-backref-type-py-function "> < span class ="n "> plt</ span > < span class ="o "> .</ span > < span class ="n "> tight_layout</ span > </ a > < span class ="p "> ()</ span >
810
810
</ pre > </ div >
811
811
</ div >
812
- < img src ="../_images/sphx_glr_plot_bcic_iv_4_ecog_cropped_002.png " srcset ="../_images/sphx_glr_plot_bcic_iv_4_ecog_cropped_002.png " alt ="plot bcic iv 4 ecog cropped " class = "sphx-glr-single-img "/> < p class ="sphx-glr-timing "> < strong > Total running time of the script:</ strong > ( 0 minutes 23.856 seconds)</ p >
813
- < p > < strong > Estimated memory usage:</ strong > 1163 MB</ p >
812
+ < img src ="../_images/sphx_glr_plot_bcic_iv_4_ecog_cropped_002.png " srcset ="../_images/sphx_glr_plot_bcic_iv_4_ecog_cropped_002.png " alt ="plot bcic iv 4 ecog cropped " class = "sphx-glr-single-img "/> < p class ="sphx-glr-timing "> < strong > Total running time of the script:</ strong > ( 0 minutes 21.765 seconds)</ p >
813
+ < p > < strong > Estimated memory usage:</ strong > 1060 MB</ p >
814
814
< div class ="sphx-glr-footer sphx-glr-footer-example docutils container " id ="sphx-glr-download-auto-examples-plot-bcic-iv-4-ecog-cropped-py ">
815
815
< div class ="sphx-glr-download sphx-glr-download-python docutils container ">
816
816
< p > < a class ="reference download internal " download ="" href ="../_downloads/dce0c540b9a673ff87c724934b4a0581/plot_bcic_iv_4_ecog_cropped.py "> < code class ="xref download docutils literal notranslate "> < span class ="pre "> Download</ span > < span class ="pre "> Python</ span > < span class ="pre "> source</ span > < span class ="pre "> code:</ span > < span class ="pre "> plot_bcic_iv_4_ecog_cropped.py</ span > </ code > </ a > </ p >
0 commit comments