-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilters.py
583 lines (397 loc) · 19.1 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import numpy as np
import cv2
import random
import math
from scipy.interpolate import UnivariateSpline
# gaussian function returns z value of x
def g(x, mu, sig):
return np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.)))
# applies gaussian blur on image
def gaussian_blur(img, x_size, y_size, sig):
# determines centre of the kernel
x_centre = int((x_size - 1) / 2)
y_centre = int((y_size - 1) / 2)
kernel = np.zeros((y_size, x_size))
# generates kernel
dist_sum = 0
for y in range(y_size):
for x in range(x_size):
dist = math.sqrt(((x - x_centre) ** 2) + ((y - y_centre) ** 2))
kernel[y, x] = g(dist, 0, sig)
dist_sum += kernel[y, x]
kernel /= dist_sum
# applies kernel to image amd returns blurred image
return cv2.filter2D(img, -1, kernel)
def problem1(img, darkening_co, blending_co, mask_type):
# darkens image by the darkening coefficient given
def darken_image(img, darkening_co):
dark = img * darkening_co
return dark
# generates rainbow mask
def create_colour_light_mask(img):
# creates blank mask with same size as image
light_mask = np.zeros((len(img[0]), len(img)), np.uint8)
# creates points to draw shape of light leak
a = int((211/400) * len(img))
b = int((114/400) * len(img))
c = int((275/400) * len(img))
d = int((363/400) * len(img))
e = int((215/400) * len(img))
f = int((303/400) * len(img))
g = int((188/400) * len(img))
h = int((75/400) * len(img))
# connects points and fills them
pts = np.array([[a, b], [c, d], [e, f], [g, h]], np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.fillPoly(light_mask, [pts], 255)
# converts from grey scale to bgr
light_mask = cv2.cvtColor(light_mask, cv2.COLOR_GRAY2BGR)
# creates second mask the same size as the image
color_mask = np.zeros(img.shape, np.uint8)
color_mask = cv2.cvtColor(color_mask, cv2.COLOR_BGR2HSV)
# creates varying brightness pattern to apply colour
# map onto so to create rainbow effect
j = 0
for i in range(len(color_mask)):
if j < 255:
color_mask[:, i, 2] = j
else:
j = 0
j += 4
# applies rainbow colour map to itself
color_mask = cv2.cvtColor(color_mask, cv2.COLOR_HSV2BGR)
color_mask = cv2.applyColorMap(color_mask, cv2.COLORMAP_RAINBOW)
# blurs mask to give smooth transition of colours
color_mask = gaussian_blur(color_mask, 21, 21, 20)
# applies rainbpw colour to the shape of the light leak
for x in range(len(light_mask)):
for y in range(len(light_mask[0])):
if all(light_mask[x, y]) != 0:
light_mask[x, y] = color_mask[x, y]
# blurs mask to give effect of light dissapating from source
light_mask = gaussian_blur(light_mask, 27, 27, 20)
return light_mask
# generates white light mask
def create_white_light_mask(img):
# creates blank mask with same size as image
mask = np.zeros((len(img), len(img[0])), np.uint8)
# creates points to draw shape of light leak
a = int((211/400) * len(img))
b = int((114/400) * len(img))
c = int((275/400) * len(img))
d = int((363/400) * len(img))
e = int((215/400) * len(img))
f = int((303/400) * len(img))
g = int((188/400) * len(img))
h = int((75/400) * len(img))
# connects points and fills them
# blurs mask to give effect of light dissapating from source
pts = np.array([[a, b], [c, d], [e, f], [g, h]], np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.fillPoly(mask, [pts], 255)
mask = gaussian_blur(mask, 21, 21, 20)
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
mask = gaussian_blur(mask, 21, 21, 20)
return mask
# alpha blending function to blend mask and darkened image
def apply_mask(dark, mask, blending_co):
filtered_image = ((blending_co * mask) +
((1-blending_co) * dark)).astype(np.uint8)
return filtered_image
# CHECK ALL PARAMETERS ARE PRESENT
if img.shape[0] <= 0 or img.shape[1] <= 0:
raise Exception("error: invalid image")
elif not darkening_co or (darkening_co < 0) and (darkening_co > 255):
raise Exception("error: invalid value for darkening_co")
elif not blending_co or (blending_co < 0) and (blending_co > 1):
raise Exception("error: invalid value for blending_co")
elif mask_type == 'white':
filtered_image = apply_mask(darken_image(
img, darkening_co), create_white_light_mask(img), blending_co)
elif mask_type == 'rainbow':
filtered_image = apply_mask(darken_image(
img, darkening_co), create_colour_light_mask(img), blending_co)
else:
raise Exception('error: invalid parameters')
cv2.imshow('Original Image', img)
cv2.imshow('Filtered Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def problem2(img, blending_co, pencil_type):
# creates pencil-like noise texture, takes grey scale image
def create_pencil_strokes(img):
prob = 0.5
# creates blank greyscale image same size as the functions input image
pencil_strokes = np.zeros(img.shape, np.uint8)
thres = 1 - prob
# randomly assigns values of 0 or 255 to each pixel to acieve salt and pepper type noise effect
for i in range(img.shape[0]):
for j in range(img.shape[1]):
rdn = random.random()
if rdn < prob:
pencil_strokes[i][j] = 0
elif rdn > thres:
pencil_strokes[i][j] = 255
else:
pencil_strokes[i][j] = img[i][j]
pencil_strokes = cv2.cvtColor(pencil_strokes, cv2.COLOR_BGR2GRAY)
size = 21
# blurs noise using motion blure to make pencil strokes
# generates motion blur kernel kernel
mb_kernel = np.zeros((size, size))
mb_kernel[int((size-1)/2), :] = np.ones(size)
mb_kernel = mb_kernel / size
# applying the kernel to the noise texture to generate pencil effect
pencil_strokes = cv2.filter2D(pencil_strokes, -1, mb_kernel)
return pencil_strokes
# determines rough outline of image and applies it to input image tto make it look more like a sketch
def draw_edges(sketch, img):
# canny edge detection to get image outline
# inverts results to get black, pencil-like lines
edges = cv2.Canny(img, 180, 200)
# adds all images together to create sketch appearance
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if edges[i, j] == 255:
if not isinstance(sketch[i, j], list):
sketch[i, j] = 0
else:
sketch[i, j] = (0, 0, 0)
sketch = gaussian_blur(sketch, 3, 3, 20)
return sketch
def grey_pencil_sketch(img, blending_co):
# converts input image to grey scale
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# creates noise texture
pencil_strokes = create_pencil_strokes(img)
# blends grey scale image with noise texture
sketched_image = ((grey * blending_co) +
(pencil_strokes * (1 - blending_co))).astype(np.uint8)
# draw edges onto sketch and blurs it
sketched_image = draw_edges(sketched_image, img)
sketched_image = gaussian_blur(sketched_image, 3, 3, 20)
return sketched_image
def colour_pencil_sketch(img, blending_co):
# creates seperate noise textures for each channel
pencil1 = create_pencil_strokes(img)
pencil2 = create_pencil_strokes(img)
# converts input image to grey scale and back to bgr so that all channels hold same data
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(grey, cv2.COLOR_GRAY2BGR)
# splits image into seperate bgr channels
blue_channel, green_channel, red_channel = cv2.split(img)
# blends blue channel with first noise texture
blue_channel = ((blue_channel * blending_co) +
(pencil1 * (1 - blending_co))).astype(np.uint8)
# blends red channel with second noise texture
red_channel = ((red_channel * blending_co) +
(pencil2 * (1 - blending_co))).astype(np.uint8)
# merges red and blue channels back together (green left blank to get purple colour)
sketched_image = cv2.merge((blue_channel, np.zeros(
green_channel.shape, np.uint8), red_channel))
# draws edges on image and blurs it
sketched_image = draw_edges(sketched_image, img)
sketched_image = gaussian_blur(sketched_image, 3, 3, 20)
return sketched_image
if img.shape[0] <= 0 or img.shape[1] <= 0:
raise Exception("error: invalid image")
elif (blending_co > 1) or (blending_co < 0):
raise Exception('error: invalid value for blending_co')
elif pencil_type == 'grey':
filtered_image = grey_pencil_sketch(img, blending_co)
elif pencil_type == 'colour':
filtered_image = colour_pencil_sketch(img, blending_co)
else:
raise Exception(
'error: invalid value for pencile_type OR invalid image given')
cv2.imshow('Original Image', img)
cv2.imshow('Filtered Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def problem3(img, blur_region):
# applies median blur to image
def median_blur(img, blur_region):
# creates blank image the same size as the input image
new_img = np.zeros(img.shape,np.uint8)
size = blur_region
centre = int((size - 1) / 2)
# for each pixel
for i in range(len(img)):
for j in range(len(img[i])):
# create list to hold values of each colour value in neighbourhood pixels
b_pixel_values = []
g_pixel_values = []
r_pixel_values = []
# for each pixel in neighbourhood
for x in range(-centre, centre + 1):
for y in range(-centre, centre + 1):
# try to append b g and r values to appropriate list
# (if out of bounds, neighbourhood pixel is ignored -> avoids blank pixels)
try:
b_pixel_values.append(img[i + x, j + y, 0])
g_pixel_values.append(img[i + x, j + y, 1])
r_pixel_values.append(img[i + x, j + y, 2])
except:
continue
# determines median for each colour value
b_median = np.median(b_pixel_values)
g_median = np.median(g_pixel_values)
r_median = np.median(r_pixel_values)
# formats them as bgr pixel
pixel_value = [b_median, g_median, r_median]
# sets the new image pixel value to be the calculate median pixel value
new_img[i, j] = pixel_value
return new_img
# uses SciPy univariate spleen to generate look up table
def create_lookup_table(x, y):
spline = UnivariateSpline(x, y)
return spline(range(256))
# applies look up table to image
def apply_LUT(channel, LUT):
for x in range(len(channel)):
for y in range(len(channel[0])):
channel[x, y] = LUT[channel[x, y]]
return channel
if img.shape[0] <= 0 or img.shape[1] <= 0:
raise Exception("error: invalid image")
elif (blur_region < 0) or (blur_region > len(img)/2):
raise Exception('error: bad value for blur_region')
# median blurs image
smooth = median_blur(img, blur_region)
# creates eperate LUT for each channel
l_LUT = create_lookup_table([0, 64, 128, 256], [0, 50, 120, 256])
a_LUT = create_lookup_table([0, 64, 128, 256], [0, 80, 160, 256])
b_LUT = create_lookup_table([0, 64, 128, 256], [0, 80, 160, 256])
# converts image to LAB format and then splits the image into seperate channels
l_channel, a_channel, b_channel = cv2.split(
cv2.cvtColor(smooth, cv2.COLOR_BGR2LAB))
# applies relevant LUT to each channel
l_channel = apply_LUT(l_channel, l_LUT)
a_channel = apply_LUT(a_channel, a_LUT)
b_channel = apply_LUT(b_channel, b_LUT)
#merges modified channel
filtered_image = cv2.merge((l_channel, a_channel, b_channel))
#converts image back to bgr format
filtered_image = cv2.cvtColor(filtered_image, cv2.COLOR_LAB2BGR)
cv2.imshow('Original Image', img)
cv2.imshow('Filtered_Image', filtered_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def problem4(img, swirl_radius, swirl_intensity):
# Performs nearest neighbour interpolation by rounding pixel coordinates to the nearest integer
# Not used in implementation as bilinear more desirable, code remains as evidence of experimentation
def nn_interpolation(img, i, j):
if i < 0 or i > len(img) - 1 or j < 0 or j > len(img) - 1:
return 0
else:
return img[int(round(i)), int(round(j))]
# Performs bilinear interpolation on pixel coordinates
def bilinear_interpolation(img, i, j):
# rounds coordinates down to get lower coordinates
i1 = math.floor(i)
j1 = math.floor(j)
# rounds coordinates down to get upper coordinates
i2 = math.ceil(i)
j2 = math.ceil(j)
# if rounded coordinates are in bounds
if i1 < 400 and i2 < 400 and j1 < 400 and j2 < 400 and i1 != i2 and j1 != j2:
# calculate pixel values using bilinear interpolation formula (distance-weighted average of surroundig pixels)
f_i_j1 = (((i2 - i)/(i2-i1)) *
img[i1, j1]) + (((i - i1)/(i2 - i1)) * img[i2, j1])
f_i_j2 = (((i2 - i)/(i2-i1)) *
img[i1, j2]) + (((i - i1)/(i2 - i1)) * img[i2, j2])
pixel_value = (((j2 - j)/(j2-j1)) * f_i_j1) + \
(((j - j1)/(j2 - j1)) * f_i_j2)
# rounds pixel values to integers and returns bgr values
return [(pixel_value[0]).astype(np.uint8), (pixel_value[1]).astype(np.uint8), (pixel_value[2]).astype(np.uint8)]
else:
# special case for when pixels round out of range (rare) and for pixels which have not been transformed
# to prevent division by 0 error (common)
return img[int(round(i)), int(round(j))]
# performs image swirl transformation
def swirl_image(img, swirl_radius, swirl_intensity):
# creates blank image same shape as input
swirled_image = np.zeros(img.shape, np.uint8)
# for each pixel in img
for x in range(len(img)):
for y in range(len(img[0])):
# normalises coordinates so that they lie between -1 and 1
i = ((2 * x) / len(img)) - 1
j = ((2 * y) / len(img)) - 1
# converts to their polar equivelent
r = math.sqrt((i**2)+(j**2))
theta = math.atan2(j, i)
# transforms value of theta if point lies within swirl radius
if r > 0 and r < swirl_radius:
theta = theta - (((swirl_radius - r) * math.pi) *
(r**(1/(((swirl_radius-r) * (10**swirl_intensity))))))
# converts point back to cartesian
i = 0.5 * len(img) * ((r * math.cos(theta))+1)
j = 0.5 * len(img[0]) * ((r * math.sin(theta))+1)
# interpolates pixel value
pixel_value = bilinear_interpolation(img, i, j)
# reverse maps pixel to new image if in range
if i < 0 or i > len(img) - 1 or j < 0 or j > len(img) - 1:
continue
else:
swirled_image[x, y] = pixel_value
return swirled_image
def reverse_swirl(swirled_image, swirl_radius, swirl_intensity):
# creates blank image same shape as input
reversed_image = np.zeros(img.shape, np.uint8)
# for each pixel in img
for x in range(len(swirled_image)):
for y in range(len(swirled_image[0])):
# normalises coordinates so that they lie between -1 and 1
i = ((2 * x) / len(img)) - 1
j = ((2 * y) / len(img)) - 1
# converts to their polar equivelent
r = math.sqrt((i**2)+(j**2))
theta = math.atan2(j, i)
# transforms value of theta if point lies within swirl radius
# by equal but opposite amount of original transformation
if r > 0 and r < swirl_radius:
theta = theta + (((swirl_radius - r) * math.pi) *
(r**(1/(((swirl_radius-r) * (10**swirl_intensity))))))
# converts point back to cartesian
i = 0.5 * len(img) * ((r * math.cos(theta))+1)
j = 0.5 * len(img[0]) * ((r * math.sin(theta))+1)
# interpolates pixel value
pixel_value = bilinear_interpolation(swirled_image, i, j)
# reverse maps pixel to new image if in range
if i < 0 or i > len(img) - 1 or j < 0 or j > len(img) - 1:
continue
else:
reversed_image[x, y] = pixel_value
return reversed_image
# applies simple low pass filter to the image
def low_pass_filter(img):
# creates kernel of size 5x5 and sets all values to 1/25
# apllies kernel to image
size = 5
lp_kernel = np.ones((size, size), np.uint8)
lp_kernel = (1 / (size**2)) * lp_kernel
lp_filtered = cv2.filter2D(img, -1, lp_kernel)
lp_filtered.astype(np.uint8)
return lp_filtered
if img.shape[0] <= 0 or img.shape[1] <= 0:
raise Exception("error: invalid image")
elif swirl_radius < 0 or swirl_radius > 1:
raise Exception("error: invalid value of swirl_radius")
elif type(swirl_intensity) != int and type(swirl_intensity) != float:
raise Exception("error: invalid value of swirl_intensity")
swirled_image = swirl_image(img, swirl_radius, swirl_intensity)
swirled_image_with_lp = swirl_image(
low_pass_filter(img), swirl_radius, swirl_intensity)
reversed_image = reverse_swirl(
swirled_image, swirl_radius, swirl_intensity)
image_change = abs(img - reversed_image)
cv2.imshow('Original Image', img)
cv2.imshow('Swirled Image', swirled_image)
cv2.imshow('Unswirled Image', reversed_image)
cv2.imshow('Low Pass Swirled Image', swirled_image_with_lp)
cv2.imshow('Image Change', image_change)
cv2.waitKey(0)
cv2.destroyAllWindows()
img = cv2.imread('input1.jpg',cv2.IMREAD_COLOR)
problem4(img, 0.75, 3)