This repository has been archived by the owner on Jul 10, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_linear.py
executable file
·294 lines (239 loc) · 10.3 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from __future__ import print_function
import argparse
import math
import sys
import time
import torch
import torch.backends.cudnn as cudnn
import torchvision.models as models
from main_ce import set_loader
from networks.resnet_big import SupConResNet, LinearClassifier, SupCEResNet
from util import AverageMeter
from util import adjust_learning_rate, warmup_learning_rate, accuracy
from util import set_optimizer
from util import str2bool
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=50,
help='save frequency')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=16,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='60,75,90',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.2,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--model_type', type=str, default='contrastive', choices=['contrastive', 'cross_entropy'])
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'imagenet', 'tiny_imagenet', 'tiny_imagenet_inliers',
'imagenet_100'], help='dataset')
parser.add_argument('--data_folder', type=str, default=None, help='path to custom dataset')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--size', type=int, default=32, help='parameter for RandomResizedCrop')
parser.add_argument('--ckpt', type=str, default='',
help='path to pre-trained model')
parser.add_argument('--use_ssl_augmentations', type=str2bool, default='False')
opt = parser.parse_args()
# set the path according to the environment
if opt.data_folder is None:
opt.data_folder = './datasets/'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = '{}_{}_lr_{}_decay_{}_bsz_{}'. \
format(opt.dataset, opt.model, opt.learning_rate, opt.weight_decay,
opt.batch_size)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
if opt.dataset == 'cifar10':
opt.n_cls = 10
elif opt.dataset == 'cifar100':
opt.n_cls = 100
elif opt.dataset == 'imagenet_100':
opt.n_cls = 100
else:
raise ValueError('dataset not supported: {}'.format(opt.dataset))
return opt
def set_model(opt):
if opt.model_type == 'contrastive':
if 'standard' in opt.model:
model_type = models.__dict__[opt.model.replace('_standard', '')]
model = model_type(num_classes=opt.n_cls)
model.fc = torch.nn.Identity()
else:
model = SupConResNet(name=opt.model)
elif opt.model_type == 'cross_entropy':
model = SupCEResNet(name=opt.model, num_classes=opt.n_cls)
else:
raise ValueError(f"Model type not supported: {opt.model_type}")
criterion = torch.nn.CrossEntropyLoss()
classifier = LinearClassifier(name=opt.model.replace('_standard', ''), num_classes=opt.n_cls)
ckpt = torch.load(opt.ckpt, map_location='cpu')
state_dict = ckpt['model']
# rename weights if necessary
new_state_dict = {}
for k, v in state_dict.items():
if 'standard' in opt.model: # for imagenet100 models
if 'backbone_q' in k:
k = k.replace('backbone_q.', '')
k = k.replace("module.", "")
if not k.startswith('fc.'):
new_state_dict[k] = v
elif 'model.' in k:
k = k.replace('model.', '')
if 'layer_blocks.' in k:
k = k.replace('layer_blocks.', 'layer')
new_state_dict[k] = v
else:
k = k.replace("module.", "")
new_state_dict[k] = v
else:
k = k.replace('backbone_q.', '')
k = k.replace("module.", "")
new_state_dict[k] = v
state_dict = new_state_dict
model = model.cuda()
classifier = classifier.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
loading_msg = model.load_state_dict(state_dict, strict=False)
print(loading_msg)
return model, classifier, criterion
def train(train_loader, model, classifier, criterion, optimizer, epoch, opt):
"""one epoch training"""
model.eval()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# compute loss
with torch.no_grad():
if 'standard' in opt.model:
features = model(images)
else:
features = model.encoder(images)
output = classifier(features.detach())
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
sys.stdout.flush()
return losses.avg, top1.avg
def validate(val_loader, model, classifier, criterion, opt):
"""validation"""
model.eval()
classifier.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
with torch.no_grad():
end = time.time()
for idx, (images, labels) in enumerate(val_loader):
images = images.float().cuda()
labels = labels.cuda()
bsz = labels.shape[0]
# forward
if '_standard' in opt.model:
output = classifier(model(images))
else:
output = classifier(model.encoder(images))
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % opt.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1))
print(' * Acc@1 {top1.avg:.3f}'.format(top1=top1))
return losses.avg, top1.avg
def main():
best_acc = 0
best_cor_accs = []
opt = parse_option()
# build data loader
train_loader, val_loader = set_loader(opt)
# build model and criterion
model, classifier, criterion = set_model(opt)
# build optimizer
optimizer = set_optimizer(opt, classifier, islinear=True)
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, acc = train(train_loader, model, classifier, criterion,
optimizer, epoch, opt)
time2 = time.time()
print('Train epoch {}, total time {:.2f}, accuracy:{:.2f}'.format(
epoch, time2 - time1, acc))
# eval for one epoch
loss, val_acc = validate(val_loader, model, classifier, criterion, opt)
if val_acc > best_acc:
best_acc = val_acc
print('best accuracy: {:.2f}'.format(best_acc))
if __name__ == '__main__':
main()