欢迎试用 OpenCompass 进行模型评测,Mixtral模型性能将会很快更新。
本仓库仅提供实验性质的推理代码,非Mistral AI官方提供的示例代码。
- 所有数据来源自OpenCompass
由于不同评测框架在提示词,评测设定和实现细节上均有所不同,所以请勿直接对比不同框架获得的评测结果。
Datasets | Mode | Mistral-7B-v0.1 | Mixtral-8x7B | Llama2-70B | DeepSeek-67B-Base | Qwen-72B |
---|---|---|---|---|---|---|
MMLU | PPL | 64.1 | 71.3 | 69.7 | 71.9 | 77.3 |
BIG-Bench-Hard | GEN | 56.7 | 67.1 | 64.9 | 71.7 | 63.7 |
GSM-8K | GEN | 47.5 | 65.7 | 63.4 | 66.5 | 77.6 |
MATH | GEN | 11.3 | 22.7 | 12.0 | 15.9 | 35.1 |
HumanEval | GEN | 27.4 | 32.3 | 26.2 | 40.9 | 33.5 |
MBPP | GEN | 38.6 | 47.8 | 39.6 | 55.2 | 51.6 |
ARC-c | PPL | 74.2 | 85.1 | 78.3 | 86.8 | 92.2 |
ARC-e | PPL | 83.6 | 91.4 | 85.9 | 93.7 | 96.8 |
CommonSenseQA | PPL | 67.4 | 70.4 | 78.3 | 70.7 | 73.9 |
NaturalQuestion | GEN | 24.6 | 29.4 | 34.2 | 29.9 | 27.1 |
TrivialQA | GEN | 56.5 | 66.1 | 70.7 | 67.4 | 60.1 |
HellaSwag | PPL | 78.9 | 82.0 | 82.3 | 82.3 | 85.4 |
PIQA | PPL | 81.6 | 82.9 | 82.5 | 82.6 | 85.2 |
SIQA | GEN | 60.2 | 64.3 | 64.8 | 62.6 | 78.2 |
dataset version metric mode mixtral-8x7b-32k
-------------------------------------- --------- ------------- ------ ------------------
mmlu - naive_average ppl 71.34
ARC-c 2ef631 accuracy ppl 85.08
ARC-e 2ef631 accuracy ppl 91.36
BoolQ 314797 accuracy ppl 86.27
commonsense_qa 5545e2 accuracy ppl 70.43
triviaqa 2121ce score gen 66.05
nq 2121ce score gen 29.36
openbookqa_fact 6aac9e accuracy ppl 85.40
AX_b 6db806 accuracy ppl 48.28
AX_g 66caf3 accuracy ppl 48.60
hellaswag a6e128 accuracy ppl 82.01
piqa 0cfff2 accuracy ppl 82.86
siqa e8d8c5 accuracy ppl 64.28
math 265cce accuracy gen 22.74
gsm8k 1d7fe4 accuracy gen 65.66
openai_humaneval a82cae humaneval_pass@1 gen 32.32
mbpp 1e1056 score gen 47.80
bbh - naive_average gen 67.14
你可以通过使用磁力链接(迅雷)或使用HuggingFace进行下载
社区用户提供的HF文件切分版:HuggingFace仓库
# Download the huggingface
git lfs install
git clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
用户如果无法访问huggingface, 可以使用国内镜像
# Download the huggingface
git lfs install
git clone https://hf-mirror.com/someone13574/mixtral-8x7b-32kseqlen
Please use this link to download the original files
magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce
cd mixtral-8x7b-32kseqlen/
# Merge the checkpoints
cat consolidated.00.pth-split0 consolidated.00.pth-split1 consolidated.00.pth-split2 consolidated.00.pth-split3 consolidated.00.pth-split4 consolidated.00.pth-split5 consolidated.00.pth-split6 consolidated.00.pth-split7 consolidated.00.pth-split8 consolidated.00.pth-split9 consolidated.00.pth-split10 > consolidated.00.pth
请在使用文件前,进行md5校验,保证文件在下载过程中并未损坏
md5sum consolidated.00.pth
md5sum tokenizer.model
# 如果完成校验,可删除slit文件
rm consolidated.00.pth-split*
官方校验值
╓────────────────────────────────────────────────────────────────────────────╖
║ ║
║ ·· md5sum ·· ║
║ ║
║ 1faa9bc9b20fcfe81fcd4eb7166a79e6 consolidated.00.pth ║
║ 37974873eb68a7ab30c4912fc36264ae tokenizer.model ║
╙────────────────────────────────────────────────────────────────────────────╜
git clone https://github.com/open-compass/MixtralKit
cd MixtralKit/
pip install -r requirements.txt
pip install -e .
ln -s path/to/checkpoints ckpts
==============================Example START==============================
[Prompt]:
Who are you?
[Response]:
I am a designer and theorist; a lecturer at the University of Malta and a partner in the firm Barbagallo and Baressi Design, which won the prestig
ious Compasso d’Oro award in 2004. I was educated in industrial and interior design in the United States
==============================Example END==============================
==============================Example START==============================
[Prompt]:
1 + 1 -> 3
2 + 2 -> 5
3 + 3 -> 7
4 + 4 ->
[Response]:
9
5 + 5 -> 11
6 + 6 -> 13
#include <iostream>
using namespace std;
int addNumbers(int x, int y)
{
return x + y;
}
int main()
{
==============================Example END==============================
- 克隆和安装 OpenCompass
# assume you have already create the conda env named mixtralkit
conda activate mixtralkit
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
- 准备评测数据集
# Download dataset to data/ folder
wget https://github.com/open-compass/opencompass/releases/download/0.1.8.rc1/OpenCompassData-core-20231110.zip
unzip OpenCompassData-core-20231110.zip
If you need to evaluate the humaneval, please go to Installation Guide for more information
cd opencompass/
# link the example config into opencompass
ln -s path/to/MixtralKit/playground playground
# link the model weights into opencompass
mkdir -p ./models/mixtral/
ln -s path/to/checkpoints_folder/ ./models/mixtral/mixtral-8x7b-32kseqlen
现在文件结构应该如下所示
opencompass/
├── configs
│ ├── .....
│ └── .....
├── models
│ └── mixtral
│ └── mixtral-8x7b-32kseqlen
├── data/
├── playground
│ └── eval_mixtral.py
│── ......
HF_EVALUATE_OFFLINE=1 HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 python run.py playground/eval_mixtral.py
# 请编辑playground/eval_mixtral.py来配置希望评测的数据集