-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdigest_spec.py
368 lines (316 loc) · 12 KB
/
digest_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import annotations
import importlib.util
from itertools import chain
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Mapping,
NamedTuple,
Optional,
Sequence,
Tuple,
Union,
)
from numpy.typing import NDArray
from typing_extensions import Unpack, assert_never
from bioimageio.spec._internal.io_utils import HashKwargs, download
from bioimageio.spec.common import FileSource
from bioimageio.spec.model import AnyModelDescr, v0_4, v0_5
from bioimageio.spec.model.v0_4 import CallableFromDepencency, CallableFromFile
from bioimageio.spec.model.v0_5 import (
ArchitectureFromFileDescr,
ArchitectureFromLibraryDescr,
ParameterizedSize,
)
from bioimageio.spec.utils import load_array
from .axis import AxisId, AxisInfo, PerAxis
from .block_meta import split_multiple_shapes_into_blocks
from .common import Halo, MemberId, PerMember, SampleId, TotalNumberOfBlocks
from .sample import (
LinearSampleAxisTransform,
Sample,
SampleBlockMeta,
sample_block_meta_generator,
)
from .stat_measures import Stat
from .tensor import Tensor
def import_callable(
node: Union[CallableFromDepencency, ArchitectureFromLibraryDescr],
/,
**kwargs: Unpack[HashKwargs],
) -> Callable[..., Any]:
"""import a callable (e.g. a torch.nn.Module) from a spec node describing it"""
if isinstance(node, CallableFromDepencency):
module = importlib.import_module(node.module_name)
c = getattr(module, str(node.callable_name))
elif isinstance(node, ArchitectureFromLibraryDescr):
module = importlib.import_module(node.import_from)
c = getattr(module, str(node.callable))
elif isinstance(node, CallableFromFile):
c = _import_from_file_impl(node.source_file, str(node.callable_name), **kwargs)
elif isinstance(node, ArchitectureFromFileDescr):
c = _import_from_file_impl(node.source, str(node.callable), sha256=node.sha256)
else:
assert_never(node)
if not callable(c):
raise ValueError(f"{node} (imported: {c}) is not callable")
return c
def _import_from_file_impl(
source: FileSource, callable_name: str, **kwargs: Unpack[HashKwargs]
):
local_file = download(source, **kwargs)
module_name = local_file.path.stem
importlib_spec = importlib.util.spec_from_file_location(
module_name, local_file.path
)
if importlib_spec is None:
raise ImportError(f"Failed to import {module_name} from {source}.")
dep = importlib.util.module_from_spec(importlib_spec)
importlib_spec.loader.exec_module(dep) # type: ignore # todo: possible to use "loader.load_module"?
return getattr(dep, callable_name)
def get_axes_infos(
io_descr: Union[
v0_4.InputTensorDescr,
v0_4.OutputTensorDescr,
v0_5.InputTensorDescr,
v0_5.OutputTensorDescr,
]
) -> List[AxisInfo]:
"""get a unified, simplified axis representation from spec axes"""
return [
(
AxisInfo.create("i")
if isinstance(a, str) and a not in ("b", "i", "t", "c", "z", "y", "x")
else AxisInfo.create(a)
)
for a in io_descr.axes
]
def get_member_id(
tensor_description: Union[
v0_4.InputTensorDescr,
v0_4.OutputTensorDescr,
v0_5.InputTensorDescr,
v0_5.OutputTensorDescr,
]
) -> MemberId:
"""get the normalized tensor ID, usable as a sample member ID"""
if isinstance(tensor_description, (v0_4.InputTensorDescr, v0_4.OutputTensorDescr)):
return MemberId(tensor_description.name)
elif isinstance(
tensor_description, (v0_5.InputTensorDescr, v0_5.OutputTensorDescr)
):
return tensor_description.id
else:
assert_never(tensor_description)
def get_member_ids(
tensor_descriptions: Sequence[
Union[
v0_4.InputTensorDescr,
v0_4.OutputTensorDescr,
v0_5.InputTensorDescr,
v0_5.OutputTensorDescr,
]
]
) -> List[MemberId]:
"""get normalized tensor IDs to be used as sample member IDs"""
return [get_member_id(descr) for descr in tensor_descriptions]
def get_test_inputs(model: AnyModelDescr) -> Sample:
"""returns a model's test input sample"""
member_ids = get_member_ids(model.inputs)
if isinstance(model, v0_4.ModelDescr):
arrays = [load_array(tt) for tt in model.test_inputs]
else:
arrays = [load_array(d.test_tensor) for d in model.inputs]
axes = [get_axes_infos(t) for t in model.inputs]
return Sample(
members={
m: Tensor.from_numpy(arr, dims=ax)
for m, arr, ax in zip(member_ids, arrays, axes)
},
stat={},
id="test-input",
)
def get_test_outputs(model: AnyModelDescr) -> Sample:
"""returns a model's test output sample"""
member_ids = get_member_ids(model.outputs)
if isinstance(model, v0_4.ModelDescr):
arrays = [load_array(tt) for tt in model.test_outputs]
else:
arrays = [load_array(d.test_tensor) for d in model.outputs]
axes = [get_axes_infos(t) for t in model.outputs]
return Sample(
members={
m: Tensor.from_numpy(arr, dims=ax)
for m, arr, ax in zip(member_ids, arrays, axes)
},
stat={},
id="test-output",
)
class IO_SampleBlockMeta(NamedTuple):
input: SampleBlockMeta
output: SampleBlockMeta
def get_input_halo(model: v0_5.ModelDescr, output_halo: PerMember[PerAxis[Halo]]):
"""returns which halo input tensors need to be divided into blocks with such that
`output_halo` can be cropped from their outputs without intorducing gaps."""
input_halo: Dict[MemberId, Dict[AxisId, Halo]] = {}
outputs = {t.id: t for t in model.outputs}
all_tensors = {**{t.id: t for t in model.inputs}, **outputs}
for t, th in output_halo.items():
axes = {a.id: a for a in outputs[t].axes}
for a, ah in th.items():
s = axes[a].size
if not isinstance(s, v0_5.SizeReference):
raise ValueError(
f"Unable to map output halo for {t}.{a} to an input axis"
)
axis = axes[a]
ref_axis = {a.id: a for a in all_tensors[s.tensor_id].axes}[s.axis_id]
total_output_halo = sum(ah)
total_input_halo = total_output_halo * axis.scale / ref_axis.scale
assert (
total_input_halo == int(total_input_halo) and total_input_halo % 2 == 0
)
input_halo.setdefault(s.tensor_id, {})[a] = Halo(
int(total_input_halo // 2), int(total_input_halo // 2)
)
return input_halo
def get_block_transform(model: v0_5.ModelDescr):
"""returns how a model's output tensor shapes relate to its input shapes"""
ret: Dict[MemberId, Dict[AxisId, Union[LinearSampleAxisTransform, int]]] = {}
batch_axis_trf = None
for ipt in model.inputs:
for a in ipt.axes:
if a.type == "batch":
batch_axis_trf = LinearSampleAxisTransform(
axis=a.id, scale=1, offset=0, member=ipt.id
)
break
if batch_axis_trf is not None:
break
axis_scales = {
t.id: {a.id: a.scale for a in t.axes}
for t in chain(model.inputs, model.outputs)
}
for out in model.outputs:
new_axes: Dict[AxisId, Union[LinearSampleAxisTransform, int]] = {}
for a in out.axes:
if a.size is None:
assert a.type == "batch"
if batch_axis_trf is None:
raise ValueError(
"no batch axis found in any input tensor, but output tensor"
+ f" '{out.id}' has one."
)
s = batch_axis_trf
elif isinstance(a.size, int):
s = a.size
elif isinstance(a.size, v0_5.DataDependentSize):
s = -1
elif isinstance(a.size, v0_5.SizeReference):
s = LinearSampleAxisTransform(
axis=a.size.axis_id,
scale=axis_scales[a.size.tensor_id][a.size.axis_id] / a.scale,
offset=a.size.offset,
member=a.size.tensor_id,
)
else:
assert_never(a.size)
new_axes[a.id] = s
ret[out.id] = new_axes
return ret
def get_io_sample_block_metas(
model: v0_5.ModelDescr,
input_sample_shape: PerMember[PerAxis[int]],
ns: Mapping[Tuple[MemberId, AxisId], ParameterizedSize.N],
batch_size: int = 1,
) -> Tuple[TotalNumberOfBlocks, Iterable[IO_SampleBlockMeta]]:
"""returns an iterable yielding meta data for corresponding input and output samples"""
if not isinstance(model, v0_5.ModelDescr):
raise TypeError(f"get_block_meta() not implemented for {type(model)}")
block_axis_sizes = model.get_axis_sizes(ns=ns, batch_size=batch_size)
input_block_shape = {
t: {aa: s for (tt, aa), s in block_axis_sizes.inputs.items() if tt == t}
for t in {tt for tt, _ in block_axis_sizes.inputs}
}
output_block_shape = {
t: {
aa: s
for (tt, aa), s in block_axis_sizes.outputs.items()
if tt == t and not isinstance(s, tuple)
}
for t in {tt for tt, _ in block_axis_sizes.outputs}
}
output_halo = {
t.id: {
a.id: Halo(a.halo, a.halo) for a in t.axes if isinstance(a, v0_5.WithHalo)
}
for t in model.outputs
}
input_halo = get_input_halo(model, output_halo)
# TODO: fix output_sample_shape_data_dep
# (below only valid if input_sample_shape is a valid model input,
# which is not a valid assumption)
output_sample_shape_data_dep = model.get_output_tensor_sizes(input_sample_shape)
output_sample_shape = {
t: {
a: -1 if isinstance(s, tuple) else s
for a, s in output_sample_shape_data_dep[t].items()
}
for t in output_sample_shape_data_dep
}
n_input_blocks, input_blocks = split_multiple_shapes_into_blocks(
input_sample_shape, input_block_shape, halo=input_halo
)
n_output_blocks, output_blocks = split_multiple_shapes_into_blocks(
output_sample_shape, output_block_shape, halo=output_halo
)
assert n_input_blocks == n_output_blocks
return n_input_blocks, (
IO_SampleBlockMeta(ipt, out)
for ipt, out in zip(
sample_block_meta_generator(
input_blocks, sample_shape=input_sample_shape, sample_id=None
),
sample_block_meta_generator(
output_blocks,
sample_shape=output_sample_shape,
sample_id=None,
),
)
)
def create_sample_for_model(
model: AnyModelDescr,
*,
stat: Optional[Stat] = None,
sample_id: SampleId = None,
inputs: Optional[PerMember[NDArray[Any]]] = None, # TODO: make non-optional
**kwargs: NDArray[Any], # TODO: deprecate in favor of `inputs`
) -> Sample:
"""Create a sample from a single set of input(s) for a specific bioimage.io model
Args:
model: a bioimage.io model description
stat: dictionary with sample and dataset statistics (may be updated in-place!)
inputs: the input(s) constituting a single sample.
"""
inputs = {MemberId(k): v for k, v in {**kwargs, **(inputs or {})}.items()}
model_inputs = {get_member_id(d): d for d in model.inputs}
if unknown := {k for k in inputs if k not in model_inputs}:
raise ValueError(f"Got unexpected inputs: {unknown}")
if missing := {
k
for k, v in model_inputs.items()
if k not in inputs and not (isinstance(v, v0_5.InputTensorDescr) and v.optional)
}:
raise ValueError(f"Missing non-optional model inputs: {missing}")
return Sample(
members={
m: Tensor.from_numpy(inputs[m], dims=get_axes_infos(ipt))
for m, ipt in model_inputs.items()
if m in inputs
},
stat={} if stat is None else stat,
id=sample_id,
)