-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgeneral_utils.py
167 lines (130 loc) · 4.38 KB
/
general_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import torch
import tqdm
import random
import argparse
import torch.nn.functional as F
from tqdm import tqdm
def l2_norm(input):
input_size = input.size()
buffer = torch.pow(input, 2)
normp = torch.sum(buffer, 1).add_(1e-12)
norm = torch.sqrt(normp)
_output = torch.div(input, norm.view(-1, 1).expand_as(input))
output = _output.view(input_size)
return output
def calc_recall_at_k(T, Y, k):
"""
T : [nb_samples] (target labels)
Y : [nb_samples x k] (k predicted labels/neighbours)
"""
s = 0
for t,y in zip(T,Y):
if t in torch.Tensor(y).long()[:k]:
s += 1
return s / (1. * len(T))
def predict_batchwise(model, dataloader, mode):
model_is_training = model.training
model.eval()
ds = dataloader.dataset
A = [[] for i in range(len(ds[0]))]
with torch.no_grad():
for batch in tqdm(dataloader):
for i, J in enumerate(batch):
if i == 0:
if mode == 'feature':
J = model(J.cuda(), 0.0, 0.0, 0.0, 0.0, mode='clean', type='clean')
else:
J = model(J.cuda())
for j in J:
A[i].append(j)
model.train()
model.train(model_is_training) # revert to previous training state
return [torch.stack(A[i]) for i in range(len(A))]
def proxy_init_calc(model, dataloader):
nb_classes = dataloader.dataset.nb_classes()
X, T, *_ = predict_batchwise(model, dataloader)
proxy_mean = torch.stack([X[T==class_idx].mean(0) for class_idx in range(nb_classes)])
return proxy_mean
def evaluate_cos(model, dataloader, mode):
X, T = predict_batchwise(model, dataloader, mode)
X = l2_norm(X)
K = 32
Y = []
cos_sim = F.linear(X, X)
Y = T[cos_sim.topk(1 + K)[1][:,1:]]
Y = Y.float().cpu()
recall = []
for k in [1, 2, 4, 8, 16, 32]:
r_at_k = calc_recall_at_k(T, Y, k)
recall.append(r_at_k)
print("R@{} : {:.3f}".format(k, 100 * r_at_k))
return recall
def evaluate_cos_Inshop(model, query_dataloader, gallery_dataloader, mode):
query_X, query_T = predict_batchwise(model, query_dataloader, mode)
gallery_X, gallery_T = predict_batchwise(model, gallery_dataloader, mode)
query_X = l2_norm(query_X)
gallery_X = l2_norm(gallery_X)
cos_sim = F.linear(query_X, gallery_X)
def recall_k(cos_sim, query_T, gallery_T, k):
m = len(cos_sim)
match_counter = 0
for i in range(m):
pos_sim = cos_sim[i][gallery_T == query_T[i]]
neg_sim = cos_sim[i][gallery_T != query_T[i]]
thresh = torch.max(pos_sim).item()
if torch.sum(neg_sim > thresh) < k:
match_counter += 1
return match_counter / m
recall = []
for k in [1, 10, 20, 30, 40, 50]:
r_at_k = recall_k(cos_sim, query_T, gallery_T, k)
recall.append(r_at_k)
print("R@{} : {:.3f}".format(k, 100 * r_at_k))
return recall
def evaluate_cos_SOP(model, dataloader, mode):
X, T = predict_batchwise(model, dataloader, mode)
X = l2_norm(X)
K = 1000
Y = []
xs = []
for x in X:
if len(xs)<10000:
xs.append(x)
else:
xs.append(x)
xs = torch.stack(xs,dim=0)
cos_sim = F.linear(xs,X)
y = T[cos_sim.topk(1 + K)[1][:,1:]]
Y.append(y.float().cpu())
xs = []
xs = torch.stack(xs,dim=0)
cos_sim = F.linear(xs,X)
y = T[cos_sim.topk(1 + K)[1][:,1:]]
Y.append(y.float().cpu())
Y = torch.cat(Y, dim=0)
recall = []
for k in [1, 10, 100, 1000]:
r_at_k = calc_recall_at_k(T, Y, k)
recall.append(r_at_k)
print("R@{} : {:.3f}".format(k, 100 * r_at_k))
return recall
def set_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def margin(x, y):
return x - y
def bool_flag(s):
"""
Parse boolean arguments from the command line.
"""
FALSY_STRINGS = {"off", "false", "0"}
TRUTHY_STRINGS = {"on", "true", "1"}
if s.lower() in FALSY_STRINGS:
return False
elif s.lower() in TRUTHY_STRINGS:
return True
else:
raise argparse.ArgumentTypeError("Invalid value for a boolean flag")