@@ -12,7 +12,7 @@ using sincei (see the parent tutorial for explanation).
12
12
13
13
Define common bash variables:
14
14
15
- .. code :: { bash}
15
+ .. code :: bash
16
16
17
17
# create dir
18
18
mkdir sincei_output/atac
@@ -39,7 +39,7 @@ quality cells in this data, such as:
39
39
- high level of secondary/supplementary alignments (filtered using
40
40
``--samFlagExclude/Include ``)
41
41
42
- .. code :: { bash}
42
+ .. code :: bash
43
43
44
44
45
45
for r in 1 2
@@ -65,7 +65,7 @@ quality cells in this data, such as:
65
65
visualized using the `MultiQC tool <https://multiqc.info/docs/ >`__, to
66
66
select appropriate list of cells to include for counting.
67
67
68
- .. code :: { bash}
68
+ .. code :: bash
69
69
70
70
multiqc sincei_output/atac/ # results in multiqc_report.html
71
71
@@ -85,7 +85,7 @@ count only high quality reads from our whitelist of barcodes.
85
85
We avoid counting reads in blacklisted regions of the human genome
86
86
(–blacklist).
87
87
88
- .. code :: { bash}
88
+ .. code :: bash
89
89
90
90
# # merge intervals from 2 peaks bed files
91
91
for f in cellranger_output_rep* /outs/atac_peaks.bed; do awk ' {if(NR>51) {print $0}}' $f >> repmerged.bed; done
@@ -122,7 +122,7 @@ statistics at region and cell level (labelled as .regions.tsv and
122
122
visualized using the `MultiQC tool <https://multiqc.info/docs/ >`__, to
123
123
select appropriate metrics to filter out the unwanted cells/regions.
124
124
125
- .. code :: { bash}
125
+ .. code :: bash
126
126
127
127
# list the metrics we can use to filter cells/regions
128
128
for r in 1 2; do scCountQC -i sincei_output/atac/scCounts_atac_peaks_rep${r} .loom --describe; done
@@ -140,7 +140,7 @@ cells with <500 and >10000 detected bins (``--filterRegionArgs``). Also,
140
140
we exclude the regions that are detected in too few cells (<100) or in
141
141
>90% of cells (``--filterCellArgs ``).
142
142
143
- .. code :: { bash}
143
+ .. code :: bash
144
144
145
145
for r in 1 2
146
146
do scCountQC -i sincei_output/atac/scCounts_atac_peaks_rep${r} .loom \
@@ -167,7 +167,7 @@ counts can now be combined for downstream analysis. We provide a tool
167
167
common features. Concatenating the filtered cells for the 2 replicates
168
168
would result in a total of >12K cells.
169
169
170
- .. code :: { bash}
170
+ .. code :: bash
171
171
172
172
scCombineCounts \
173
173
-i sincei_output/atac/scCounts_atac_peaks_filtered_rep1.loom \
@@ -183,7 +183,7 @@ would result in a total of >12K cells.
183
183
Finally, we will apply LSA on the filtered dataset to reduce the
184
184
dimentionality to 30 Topics, combined with louvain clustering.
185
185
186
- .. code :: { bash}
186
+ .. code :: bash
187
187
188
188
scClusterCells -i sincei_output/atac/scCounts_atac_peaks_filtered.merged.loom \
189
189
-m LSA --clusterResolution 1 \
@@ -202,7 +202,7 @@ a biologically meaningful way.
202
202
We can color our UMAP output from ``scClusterCells `` with the cell-type
203
203
information based on FACS-sorting from sortChIC.
204
204
205
- .. code :: {r}
205
+ .. code :: r
206
206
207
207
library(dplyr)
208
208
library(magrittr)
@@ -275,7 +275,7 @@ files, except that we can ask for a normalized bulk signal (specified
275
275
using ``--normalizeUsing `` option) . Below, we produce CPM-normalized
276
276
bigwigs with 1kb bins.
277
277
278
- .. code :: { bash}
278
+ .. code :: bash
279
279
280
280
scBulkCoverage -p 20 --cellTag CB --normalizeUsing CPM --binSize 1000 \
281
281
--minMappingQuality 10 --samFlagInclude 64 --samFlagExclude 2048 \
0 commit comments