-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathtester_GUDB.py
108 lines (75 loc) · 4.1 KB
/
tester_GUDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import pandas as pd
import _tester_utils
import pathlib
from ecgdetectors import Detectors
current_dir = pathlib.Path(__file__).resolve()
data_dir = str(pathlib.Path(current_dir).parents[1]/'dataset_716'/'experiment_data')
code_dir = str(pathlib.Path(current_dir).parents[1]/'dataset_716'/'example_code')
import sys
sys.path.insert(0, code_dir)
from ecg_gla_database import Ecg
class GUDB_test:
"""
This class benchmarks detectors against the GU database.
You need to download both the GU database from: http://researchdata.gla.ac.uk/716/
and needs to be placed below this directory: "../dataset_716".
"""
def single_classifier_test(self, detector, tolerance=0, config="chest_strap"):
max_delay_in_samples = 250 / 3
total_subjects = Ecg.total_subjects
results = np.zeros((total_subjects, (4*len(Ecg.experiments))+1), dtype=int)
for subject_number in range(0, total_subjects):
progress = int(subject_number/float(total_subjects)*100.0)
print("GUDB "+config+" progress: %i%%" % progress)
results[subject_number, 0] = subject_number
exp_counter = 1
for experiment in Ecg.experiments:
ecg_class = Ecg(data_dir, subject_number, experiment)
anno_exists = False
if config=="chest_strap" and ecg_class.anno_cs_exists:
unfiltered_ecg = ecg_class.cs_V2_V1
anno = ecg_class.anno_cs
anno_exists = True
elif config=="loose_cables" and ecg_class.anno_cables_exists:
unfiltered_ecg = ecg_class.einthoven_II
anno = ecg_class.anno_cables
anno_exists = True
elif config!="chest_strap" and config!="loose_cables":
raise RuntimeError("Config argument must be chest_strap or loose_cables!")
return results
if anno_exists:
r_peaks = detector(unfiltered_ecg)
delay = _tester_utils.calcMedianDelay(r_peaks, unfiltered_ecg, max_delay_in_samples)
print("delay = ",delay)
# there must be a delay in all cases so anything below is a bad sign
if delay > 1:
TP, FP, FN = _tester_utils.evaluate_detector(r_peaks, anno, delay, tol=tolerance)
TN = len(unfiltered_ecg)-(TP+FP+FN)
results[subject_number, exp_counter] = TP
results[subject_number, exp_counter+1] = FP
results[subject_number, exp_counter+2] = FN
results[subject_number, exp_counter+3] = TN
exp_counter = exp_counter+4
return results
def classifer_test_all(self, tolerance=0, config="chest_strap"):
det_names = ['two_average', 'matched_filter', 'swt', 'engzee', 'christov', 'hamilton', 'pan_tompkins']
output_names = ['TP', 'FP', 'FN', 'TN']
total_results = np.zeros((Ecg.total_subjects, 4*len(Ecg.experiments)*len(det_names)), dtype=int)
counter = 0
for det_name in det_names:
print('\n'+config+" "+det_name+":")
result = self.single_classifier_test(_tester_utils.det_from_name(det_name, 250), tolerance=tolerance, config=config)
result = result[:, 1:]
total_results[:, counter:counter+(4*len(Ecg.experiments))] = result
counter = counter+(4*len(Ecg.experiments))
index_labels = np.arange(Ecg.total_subjects)
col_labels = []
for det_name in det_names:
for experiment_name in Ecg.experiments:
for output_name in output_names:
label = det_name+" "+experiment_name+" "+output_name
col_labels.append(label)
total_results_pd = pd.DataFrame(total_results, index_labels, col_labels, dtype=int)
total_results_pd.to_csv('results_GUDB_'+config+'.csv', sep=',')
return total_results_pd