-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
182 lines (165 loc) · 6.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
"""
Minesweeper source code
"""
import copy
import numpy as np
class MinesweeperBoard(object):
"""
class to solve minesweeper move for a given board
board must be 9x9 (for now)
board must have:
blanks " " for non contributing cells
'?' for unknowns
numerical values for clues
"""
def __init__(self):
"""
initialize MinesweeperBoard object
stores the board, bomb locations, and safe moves
should change this to only store the board and the graph
"""
self.board_ = MinesweeperBoard.read_board_()
self.bomb_locations_ = set()
self.safe_moves_ = set()
self.graph_ = dict()
@staticmethod
def read_board_():
"""
reads board from board.txt file as a 2d numpy array
assumes 9x9, this could be generalized
"""
board = np.ndarray((9, 9), dtype='object')
with open('board.txt', 'r') as fobj:
lines = fobj.readlines()
for iline, line in enumerate(lines):
parsed = np.asarray([c for c in line if c != '\n'], dtype='object')
board[iline, :] = parsed
return board
def __str__(self):
"""
converts board to readable format
makes no assumptions on board dimensions
"""
out = ""
for i in range(self.board_.shape[0]):
line = [x for x in self.board_[i, :]]
out += " ".join(line) + '\n'
return out
def get_clue_indices_(self):
"""
finds the indicies with numbers in them
"""
i_x = np.in1d(self.board_.ravel(), [str(x) for x in range(1, 11)])
i_x = i_x.reshape(self.board_.shape)
indices = list(zip(np.where(i_x)[0], np.where(i_x)[1]))
return indices
def make_graph_(self):
"""
makes a graph of all clues (numerical cells) connected to all suspects (? cells)
graph will store:
number of bombs (numerical value)
suspects (indices of connected ?)
and safe moves (? that are guaranteed safe)
"""
#self.graph_ = dict()
for idx in self.get_clue_indices_():
self.graph_[idx] = {'bombs': int(self.board_[idx]),
'suspects': self.find_adjacent_suspects_(idx),
'safe_moves': set()}
#return graph
def graph_deduction_(self):
"""
builds graph and deduces where bombs are
lazily checks to see if graph has changed from previous iteration
"""
self.make_graph_()
tmp_graph = copy.deepcopy(self.graph_)
while True:
self.guaranteed_bombs_()
#for bomb in bombs:
# self.bomb_locations_.add(bomb)
self.reduce_graph_for_bomb_()
self.mark_bomb_()
if self.graph_ == tmp_graph:
break
else:
tmp_graph = copy.deepcopy(self.graph_)
#print(str(self))
#return graph
def reduce_graph_for_bomb_(self):
"""
for found bombs (indices in bombs), the graph is tailored:
removes bombs from suspects
decrement number of bombs for a node
if number of bombs is reduced to zero, all suspects (that are not bomb) are safe moves
"""
to_remove = []
for clue in self.graph_.keys():
for suspect in self.graph_[clue]['suspects']:
if suspect in self.bomb_locations_:
self.graph_[clue]['bombs'] -= 1
if self.graph_[clue]['bombs'] == 0:
to_remove += [i for i in self.graph_[clue]['suspects'] if i not in to_remove]
self.graph_[clue]['safe_moves'] |= set([i for i in self.graph_[clue]['suspects'] if i not in self.bomb_locations_])
#for i in self.graph_[clue]['safe_moves']:
# self.safe_moves_.add(i)
self.graph_[clue]['suspects'] = []
to_remove += [b for b in self.bomb_locations_ if b not in to_remove]
for clue in self.graph_.keys():
self.graph_[clue]['suspects'] = [i for i in self.graph_[clue]['suspects'] if i not in to_remove]
#return graph
def mark_bomb_(self):
"""
updates board with guaranteed bomb locations
"""
for bomb in self.bomb_locations_:
self.board_[bomb] = "*"
def guaranteed_bombs_(self):
""""
analyzes graph to see where guaranteed bombs are
if number of suspects is equal to number of bombs, a guaranteed bomb has been found
these are added to the bombs list (will be reduced from graph in separate routine)
"""
#bombs = []
for key in self.graph_.keys():
if len(self.graph_[key]['suspects']) == self.graph_[key]['bombs']:
#for i in self.graph_[key]['suspects']:
self.bomb_locations_.update(tuple(self.graph_[key]['suspects']))
#return bombs
def find_adjacent_suspects_(self, idx):
"""
for a given index of the board, all suspect (?) indices touching said index
will be return (index should be a clue, this is not enforced here)
"""
min_x = max(idx[0] - 1, 0)
max_x = min(idx[0] + 1, 9)
min_y = max(idx[1] - 1, 0)
max_y = min(idx[1] + 1, 9)
suspects = []
for i_x in range(min_x, max_x + 1):
for i_y in range(min_y, max_y + 1):
if self.board_[i_x, i_y] == '?':
suspects.append((i_x, i_y))
return suspects
def make_safe_moves_(self):
for key in self.graph_.keys():
self.safe_moves_.update(tuple([i for i in self.graph_[key]['safe_moves']]))
def main():
"""
runs minesweeper
"""
board = MinesweeperBoard()
print("Board to solve")
print(str(board))
board.make_graph_()
graph = board.graph_deduction_()
print("Board with mines")
print(str(board))
#print(board.bomb_locations_)
#board.safe_moves_ = [i for i in board.safe_moves_ if i not in board.bomb_locations_]
board.make_safe_moves_()
#print(board.safe_moves_)
print("Guaranteed safe moves")
print(sorted(board.safe_moves_))
if __name__ == '__main__':
main()