@@ -13,12 +13,14 @@ class NanToNum(Transform):
13
13
14
14
Parameters
15
15
----------
16
- default_value : float
17
- Value to substitute wherever data is NaN.
18
- return_mask : bool, default=False
19
- If True, a mask array will be returned under a new key.
20
- mask_prefix : str, default='mask_'
21
- Prefix for the mask key in the output dictionary.
16
+ key : str
17
+ The variable key to look for in the simulation data dict.
18
+ default_value : float, optional
19
+ Value to substitute wherever data is NaN. Default is 0.0.
20
+ return_mask : bool, optional
21
+ If True, a mask array will be returned under a new key. Default is False.
22
+ mask_prefix : str, optional
23
+ Prefix for the mask key in the output dictionary. Default is 'mask_'.
22
24
"""
23
25
24
26
def __init__ (self , key : str , default_value : float = 0.0 , return_mask : bool = False , mask_prefix : str = "mask" ):
@@ -81,10 +83,10 @@ def inverse(self, data: dict[str, any], **kwargs) -> dict[str, any]:
81
83
values = data [self .key ]
82
84
83
85
if not self .return_mask :
84
- values [values == self .default_value ] = np .nan # we assume default_value is not in data
86
+ # assumes default_value is not in nan
87
+ values [values == self .default_value ] = np .nan
85
88
else :
86
89
mask_array = data [self .mask_key ].astype (bool )
87
- # Put NaNs where mask is 0
88
90
values [~ mask_array ] = np .nan
89
91
90
92
data [self .key ] = values
0 commit comments