Skip to content

Commit 13e0ff8

Browse files
author
github-actions
committed
auto: Rebuild docs.
1 parent 301fae5 commit 13e0ff8

13 files changed

+1617
-9
lines changed

_examples/Amortized_Point_Estimation.html

Lines changed: 916 additions & 0 deletions
Large diffs are not rendered by default.
Loading
Loading
Loading

_modules/bayesflow/amortizers.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -398,7 +398,7 @@ <h1>Source code for bayesflow.amortizers</h1><div class="highlight"><pre>
398398
<span class="kn">from</span> <span class="nn">bayesflow.default_settings</span> <span class="kn">import</span> <span class="n">DEFAULT_KEYS</span>
399399
<span class="kn">from</span> <span class="nn">bayesflow.exceptions</span> <span class="kn">import</span> <span class="n">ConfigurationError</span><span class="p">,</span> <span class="n">SummaryStatsError</span>
400400
<span class="kn">from</span> <span class="nn">bayesflow.helper_functions</span> <span class="kn">import</span> <span class="n">check_tensor_sanity</span>
401-
<span class="kn">from</span> <span class="nn">bayesflow.losses</span> <span class="kn">import</span> <span class="n">log_loss</span><span class="p">,</span> <span class="n">mmd_summary_space</span>
401+
<span class="kn">from</span> <span class="nn">bayesflow.losses</span> <span class="kn">import</span> <span class="n">log_loss</span><span class="p">,</span> <span class="n">mmd_summary_space</span><span class="p">,</span> <span class="n">norm_diff</span>
402402
<span class="kn">from</span> <span class="nn">bayesflow.networks</span> <span class="kn">import</span> <span class="n">EvidentialNetwork</span>
403403

404404

@@ -820,7 +820,7 @@ <h1>Source code for bayesflow.amortizers</h1><div class="highlight"><pre>
820820
<span class="k">elif</span> <span class="n">direct_conditions</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
821821
<span class="n">full_cond</span> <span class="o">=</span> <span class="n">direct_conditions</span>
822822
<span class="k">else</span><span class="p">:</span>
823-
<span class="k">raise</span> <span class="n">SummaryStatsError</span><span class="p">(</span><span class="s2">&quot;Could not concatenarte or determine conditioning inputs...&quot;</span><span class="p">)</span>
823+
<span class="k">raise</span> <span class="n">SummaryStatsError</span><span class="p">(</span><span class="s2">&quot;Could not concatenate or determine conditioning inputs...&quot;</span><span class="p">)</span>
824824
<span class="k">return</span> <span class="n">sum_condition</span><span class="p">,</span> <span class="n">full_cond</span>
825825

826826
<span class="k">def</span> <span class="nf">_determine_latent_dist</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">latent_dist</span><span class="p">):</span>
@@ -1849,7 +1849,7 @@ <h1>Source code for bayesflow.amortizers</h1><div class="highlight"><pre>
18491849
<span class="sd"> &quot;&quot;&quot;</span>
18501850

18511851
<span class="n">net_out</span> <span class="o">=</span> <span class="bp">self</span><span class="p">(</span><span class="n">input_dict</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
1852-
<span class="n">loss</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loss_fn</span><span class="p">(</span><span class="n">net_out</span> <span class="o">-</span> <span class="n">input_dict</span><span class="p">[</span><span class="n">DEFAULT_KEYS</span><span class="p">[</span><span class="s2">&quot;parameters&quot;</span><span class="p">]]))</span>
1852+
<span class="n">loss</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">loss_fn</span><span class="p">(</span><span class="n">net_out</span><span class="p">,</span> <span class="n">input_dict</span><span class="p">[</span><span class="n">DEFAULT_KEYS</span><span class="p">[</span><span class="s2">&quot;parameters&quot;</span><span class="p">]]))</span>
18531853
<span class="k">return</span> <span class="n">loss</span></div>
18541854

18551855

@@ -1879,7 +1879,7 @@ <h1>Source code for bayesflow.amortizers</h1><div class="highlight"><pre>
18791879
<span class="c1"># In case of user-provided loss, override norm order</span>
18801880
<span class="k">if</span> <span class="n">loss_fun</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
18811881
<span class="k">return</span> <span class="n">loss_fun</span>
1882-
<span class="k">return</span> <span class="n">partial</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">norm</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="n">norm_ord</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>
1882+
<span class="k">return</span> <span class="n">partial</span><span class="p">(</span><span class="n">norm_diff</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="n">norm_ord</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span></div>
18831883

18841884
</pre></div>
18851885

_modules/bayesflow/helper_networks.html

Lines changed: 14 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -739,7 +739,7 @@ <h1>Source code for bayesflow.helper_networks</h1><div class="highlight"><pre>
739739

740740
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
741741

742-
<span class="c1"># Initialize scale and bias with zeros and ones if no batch for initalization was provided.</span>
742+
<span class="c1"># Initialize scale and bias with zeros and ones if no batch for initialization was provided.</span>
743743
<span class="k">if</span> <span class="n">act_norm_init</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
744744
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="n">latent_dim</span><span class="p">,)),</span> <span class="n">trainable</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s2">&quot;act_norm_scale&quot;</span><span class="p">)</span>
745745

@@ -1037,7 +1037,15 @@ <h1>Source code for bayesflow.helper_networks</h1><div class="highlight"><pre>
10371037
<div class="viewcode-block" id="ConfigurableMLP.__init__">
10381038
<a class="viewcode-back" href="../../api/bayesflow.helper_networks.html#bayesflow.helper_networks.ConfigurableMLP.__init__">[docs]</a>
10391039
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
1040-
<span class="bp">self</span><span class="p">,</span> <span class="n">input_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">,</span> <span class="n">residual</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">dropout_rate</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span>
1040+
<span class="bp">self</span><span class="p">,</span>
1041+
<span class="n">input_dim</span><span class="p">,</span>
1042+
<span class="n">hidden_dim</span><span class="o">=</span><span class="mi">512</span><span class="p">,</span>
1043+
<span class="n">output_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
1044+
<span class="n">num_hidden</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
1045+
<span class="n">activation</span><span class="o">=</span><span class="s2">&quot;relu&quot;</span><span class="p">,</span>
1046+
<span class="n">residual</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
1047+
<span class="n">dropout_rate</span><span class="o">=</span><span class="mf">0.05</span><span class="p">,</span>
1048+
<span class="o">**</span><span class="n">kwargs</span><span class="p">,</span>
10411049
<span class="p">):</span>
10421050
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
10431051
<span class="sd"> Creates an instance of a flexible and simple MLP with optional residual connections and dropout.</span>
@@ -1048,6 +1056,8 @@ <h1>Source code for bayesflow.helper_networks</h1><div class="highlight"><pre>
10481056
<span class="sd"> The input dimensionality</span>
10491057
<span class="sd"> hidden_dim : int, optional, default: 512</span>
10501058
<span class="sd"> The dimensionality of the hidden layers</span>
1059+
<span class="sd"> output_dim : int, optional, default: None</span>
1060+
<span class="sd"> The output dimensionality. If None is passed, `output_dim` is set to `input_dim`</span>
10511061
<span class="sd"> num_hidden : int, optional, default: 2</span>
10521062
<span class="sd"> The number of hidden layers (minimum: 1)</span>
10531063
<span class="sd"> activation : string, optional, default: &#39;relu&#39;</span>
@@ -1061,6 +1071,7 @@ <h1>Source code for bayesflow.helper_networks</h1><div class="highlight"><pre>
10611071
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
10621072

10631073
<span class="bp">self</span><span class="o">.</span><span class="n">input_dim</span> <span class="o">=</span> <span class="n">input_dim</span>
1074+
<span class="bp">self</span><span class="o">.</span><span class="n">output_dim</span> <span class="o">=</span> <span class="n">input_dim</span> <span class="k">if</span> <span class="n">output_dim</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">output_dim</span>
10641075
<span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
10651076
<span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="n">hidden_dim</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="n">activation</span><span class="p">),</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout_rate</span><span class="p">)]</span>
10661077
<span class="p">)</span>
@@ -1073,7 +1084,7 @@ <h1>Source code for bayesflow.helper_networks</h1><div class="highlight"><pre>
10731084
<span class="n">dropout_rate</span><span class="o">=</span><span class="n">dropout_rate</span><span class="p">,</span>
10741085
<span class="p">)</span>
10751086
<span class="p">)</span>
1076-
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="n">input_dim</span><span class="p">))</span></div>
1087+
<span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">output_dim</span><span class="p">))</span></div>
10771088

10781089

10791090
<div class="viewcode-block" id="ConfigurableMLP.call">

_modules/bayesflow/losses.html

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -566,6 +566,26 @@ <h1>Source code for bayesflow.losses</h1><div class="highlight"><pre>
566566
<span class="n">loss</span> <span class="o">=</span> <span class="o">-</span><span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">reduce_sum</span><span class="p">(</span><span class="n">model_indices</span> <span class="o">*</span> <span class="n">tf</span><span class="o">.</span><span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">preds</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
567567
<span class="k">return</span> <span class="n">loss</span></div>
568568

569+
570+
571+
<div class="viewcode-block" id="norm_diff">
572+
<a class="viewcode-back" href="../../api/bayesflow.losses.html#bayesflow.losses.norm_diff">[docs]</a>
573+
<span class="k">def</span> <span class="nf">norm_diff</span><span class="p">(</span><span class="n">tensor_a</span><span class="p">,</span> <span class="n">tensor_b</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="s1">&#39;euclidean&#39;</span><span class="p">):</span>
574+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
575+
<span class="sd"> Wrapper around tf.norm that computes the norm of the difference between two tensors along the specified axis.</span>
576+
577+
<span class="sd"> Parameters</span>
578+
<span class="sd"> ----------</span>
579+
<span class="sd"> tensor_a : A Tensor.</span>
580+
<span class="sd"> tensor_b : A Tensor. Must be the same shape as tensor_a.</span>
581+
<span class="sd"> axis : Any or None</span>
582+
<span class="sd"> Axis along which to compute the norm of the difference. Default is None.</span>
583+
<span class="sd"> ord : int or str</span>
584+
<span class="sd"> Order of the norm. Supports &#39;euclidean&#39; and other norms supported by tf.norm. Default is &#39;euclidean&#39;.</span>
585+
<span class="sd"> &quot;&quot;&quot;</span>
586+
<span class="n">difference</span> <span class="o">=</span> <span class="n">tensor_a</span> <span class="o">-</span> <span class="n">tensor_b</span>
587+
<span class="k">return</span> <span class="n">tf</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">difference</span><span class="p">,</span> <span class="nb">ord</span><span class="o">=</span><span class="nb">ord</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="n">axis</span><span class="p">)</span></div>
588+
569589
</pre></div>
570590

571591
</article>

0 commit comments

Comments
 (0)