You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: README.md
+80-80
Original file line number
Diff line number
Diff line change
@@ -7,148 +7,148 @@ Feel free to explore the entries below and use the provided BibTeX information f
7
7
Contributions are always welcome, this is a community-driven project.
8
8
## Overview
9
9
10
-
-**Normalizing flows for probabilistic modeling and inference**.<br /> George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan
10
+
-**Normalizing flows for probabilistic modeling and inference**.<br /> George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan<br />
11
11
<details>
12
12
<summary>Show BibTeX</summary>
13
13
<pre><code>
14
14
@article{papamakarios2021normalizing,
15
-
title = {Normalizing flows for probabilistic modeling and inference},
16
-
year = {2021},
17
-
publisher = {JMLR.org},
18
-
volume = {22},
19
-
number = {1},
20
-
issn = {1532-4435},
21
-
journal = {J. Mach. Learn. Res.},
22
-
month = {jan},
23
-
articleno = {57},
24
-
numpages = {64},
25
-
category = {overview},
26
-
author = {Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji}
15
+
title = {Normalizing flows for probabilistic modeling and inference},
16
+
year = {2021},
17
+
publisher = {JMLR.org},
18
+
volume = {22},
19
+
number = {1},
20
+
issn = {1532-4435},
21
+
journal = {J. Mach. Learn. Res.},
22
+
month = {jan},
23
+
articleno = {57},
24
+
numpages = {64},
25
+
category = {overview},
26
+
author = {Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji}
27
27
}
28
28
</code>
29
29
</pre></details>
30
30
31
-
-**Neural Methods for Amortized Inference**. [[Paper]](https://arxiv.org/abs/2404.12484) <br /> Andrew Zammit-Mangion, Matthew Sainsbury-Dale, Raphaël Huser
31
+
-**Neural Methods for Amortized Inference**. [[Paper]](https://arxiv.org/abs/2404.12484) <br /> Andrew Zammit-Mangion, Matthew Sainsbury-Dale, Raphaël Huser<br />
32
32
<details>
33
33
<summary>Show BibTeX</summary>
34
34
<pre><code>
35
35
@misc{zammit-mangion2024neural,
36
-
title = {Neural Methods for Amortized Inference},
37
-
publisher = {arXiv},
38
-
year = {2024},
39
-
category = {overview},
40
-
author = {Zammit-Mangion, Andrew and Sainsbury-Dale, Matthew and Huser, Raphaël}
36
+
title = {Neural Methods for Amortized Inference},
37
+
publisher = {arXiv},
38
+
year = {2024},
39
+
category = {overview},
40
+
author = {Zammit-Mangion, Andrew and Sainsbury-Dale, Matthew and Huser, Raphaël}
41
41
}
42
42
</code>
43
43
</pre></details>
44
44
45
-
-**The frontier of simulation-based inference**. [[Paper]](http://dx.doi.org/10.1073/pnas.1912789117) <br /> Kyle Cranmer, Johann Brehmer, Gilles Louppe
45
+
-**The frontier of simulation-based inference**. [[Paper]](http://dx.doi.org/10.1073/pnas.1912789117) <br /> Kyle Cranmer, Johann Brehmer, Gilles Louppe<br />
46
46
<details>
47
47
<summary>Show BibTeX</summary>
48
48
<pre><code>
49
49
@article{Cranmer2020,
50
-
title = {The frontier of simulation-based inference},
51
-
volume = {117},
52
-
ISSN = {1091-6490},
53
-
DOI = {10.1073/pnas.1912789117},
54
-
number = {48},
55
-
journal = {Proceedings of the National Academy of Sciences},
56
-
publisher = {Proceedings of the National Academy of Sciences},
57
-
year = {2020},
58
-
pages = {30055–30062},
59
-
category = {overview},
60
-
author = {Cranmer, Kyle and Brehmer, Johann and Louppe, Gilles}
50
+
title = {The frontier of simulation-based inference},
51
+
volume = {117},
52
+
ISSN = {1091-6490},
53
+
DOI = {10.1073/pnas.1912789117},
54
+
number = {48},
55
+
journal = {Proceedings of the National Academy of Sciences},
56
+
publisher = {Proceedings of the National Academy of Sciences},
57
+
year = {2020},
58
+
pages = {30055–30062},
59
+
category = {overview},
60
+
author = {Cranmer, Kyle and Brehmer, Johann and Louppe, Gilles}
61
61
}
62
62
</code>
63
63
</pre></details>
64
64
## Software
65
65
66
-
-**BayesFlow: Amortized Bayesian Workflows With Neural Networks**. [[Code]](https://bayesflow.org/) <br /> Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, Paul-Christian Bürkner
66
+
-**BayesFlow: Amortized Bayesian Workflows With Neural Networks**. [[Code]](https://bayesflow.org/) <br /> Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, Paul-Christian Bürkner<br />
67
67
<details>
68
68
<summary>Show BibTeX</summary>
69
69
<pre><code>
70
70
@article{radev2023bayesflow,
71
-
doi = {10.21105/joss.05702},
72
-
year = {2023},
73
-
publisher = {The Open Journal},
74
-
volume = {8},
75
-
number = {89},
76
-
pages = {5702},
77
-
title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
78
-
journal = {Journal of Open Source Software},
79
-
category = {software},
80
-
author = {Radev, Stefan T. and Schmitt, Marvin and Schumacher, Lukas and Elsemüller, Lasse and Pratz, Valentin and Schälte, Yannik and Köthe, Ullrich and Bürkner, Paul-Christian}
71
+
doi = {10.21105/joss.05702},
72
+
year = {2023},
73
+
publisher = {The Open Journal},
74
+
volume = {8},
75
+
number = {89},
76
+
pages = {5702},
77
+
title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
78
+
journal = {Journal of Open Source Software},
79
+
category = {software},
80
+
author = {Radev, Stefan T. and Schmitt, Marvin and Schumacher, Lukas and Elsemüller, Lasse and Pratz, Valentin and Schälte, Yannik and Köthe, Ullrich and Bürkner, Paul-Christian}
81
81
}
82
82
</code>
83
83
</pre></details>
84
84
85
-
-**sbi: A toolkit for simulation-based inference**. [[Code]](https://sbi-dev.github.io/sbi/latest/) <br /> Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J. Gonçalves, David S. Greenberg, Jakob H. Macke
85
+
-**sbi: A toolkit for simulation-based inference**. [[Code]](https://sbi-dev.github.io/sbi/latest/) <br /> Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J. Gonçalves, David S. Greenberg, Jakob H. Macke<br />
86
86
<details>
87
87
<summary>Show BibTeX</summary>
88
88
<pre><code>
89
89
@article{tejero-cantero2020sbi,
90
-
doi = {10.21105/joss.02505},
91
-
year = {2020},
92
-
publisher = {The Open Journal},
93
-
volume = {5},
94
-
number = {52},
95
-
pages = {2505},
96
-
title = {sbi: A toolkit for simulation-based inference},
97
-
journal = {Journal of Open Source Software},
98
-
category = {software},
99
-
author = {Tejero-Cantero, Alvaro and Boelts, Jan and Deistler, Michael and Lueckmann, Jan-Matthis and Durkan, Conor and Gonçalves, Pedro J. and Greenberg, David S. and Macke, Jakob H.}
90
+
doi = {10.21105/joss.02505},
91
+
year = {2020},
92
+
publisher = {The Open Journal},
93
+
volume = {5},
94
+
number = {52},
95
+
pages = {2505},
96
+
title = {sbi: A toolkit for simulation-based inference},
97
+
journal = {Journal of Open Source Software},
98
+
category = {software},
99
+
author = {Tejero-Cantero, Alvaro and Boelts, Jan and Deistler, Michael and Lueckmann, Jan-Matthis and Durkan, Conor and Gonçalves, Pedro J. and Greenberg, David S. and Macke, Jakob H.}
100
100
}
101
101
</code>
102
102
</pre></details>
103
103
## Paper
104
104
105
-
-**Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference**. [[Paper]](http://dx.doi.org/10.1103/PhysRevLett.130.171403) <br /> Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf
105
+
-**Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference**. [[Paper]](http://dx.doi.org/10.1103/PhysRevLett.130.171403) <br /> Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke, Alessandra Buonanno, Bernhard Schölkopf<br />
106
106
<details>
107
107
<summary>Show BibTeX</summary>
108
108
<pre><code>
109
109
@article{dax2023neural,
110
-
title = {Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference},
111
-
volume = {130},
112
-
ISSN = {1079-7114},
113
-
DOI = {10.1103/physrevlett.130.171403},
114
-
number = {17},
115
-
journal = {Physical Review Letters},
116
-
publisher = {American Physical Society (APS)},
117
-
year = {2023},
118
-
category = {paper},
119
-
author = {Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P\"{u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch\"{o}lkopf, Bernhard}
110
+
title = {Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference},
111
+
volume = {130},
112
+
ISSN = {1079-7114},
113
+
DOI = {10.1103/physrevlett.130.171403},
114
+
number = {17},
115
+
journal = {Physical Review Letters},
116
+
publisher = {American Physical Society (APS)},
117
+
year = {2023},
118
+
category = {paper},
119
+
author = {Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P\"{u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch\"{o}lkopf, Bernhard}
120
120
}
121
121
</code>
122
122
</pre></details>
123
123
124
-
-**JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models**. [[Paper]](https://proceedings.mlr.press/v216/radev23a) <br /> Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, Paul-Christian Bürkner
124
+
-**JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models**. [[Paper]](https://proceedings.mlr.press/v216/radev23a) <br /> Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, Paul-Christian Bürkner<br />
125
125
<details>
126
126
<summary>Show BibTeX</summary>
127
127
<pre><code>
128
128
@inproceedings{radev2023jana,
129
-
title = {{JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models}},
130
-
booktitle = {Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence},
131
-
pages = {1695--1706},
132
-
year = {2023},
133
-
volume = {216},
134
-
series = {Proceedings of Machine Learning Research},
135
-
publisher = {PMLR},
136
-
category = {paper},
137
-
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian}
129
+
title = {{JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models}},
130
+
booktitle = {Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence},
131
+
pages = {1695--1706},
132
+
year = {2023},
133
+
volume = {216},
134
+
series = {Proceedings of Machine Learning Research},
135
+
publisher = {PMLR},
136
+
category = {paper},
137
+
author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian}
138
138
}
139
139
</code>
140
140
</pre></details>
141
141
142
-
-**ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems**. [[Paper]](https://arxiv.org/abs/2405.05398) <br /> Rafael Orozco, Ali Siahkoohi, Mathias Louboutin, Felix J. Herrmann
142
+
-**ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems**. [[Paper]](https://arxiv.org/abs/2405.05398) <br /> Rafael Orozco, Ali Siahkoohi, Mathias Louboutin, Felix J. Herrmann<br />
143
143
<details>
144
144
<summary>Show BibTeX</summary>
145
145
<pre><code>
146
146
@misc{orozco2024aspire,
147
-
Title = {ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems},
148
-
Year = {2024},
149
-
Eprint = {arXiv:2405.05398},
150
-
category = {paper},
151
-
author = {Orozco, Rafael and Siahkoohi, Ali and Louboutin, Mathias and Herrmann, Felix J.}
147
+
Title = {ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems},
148
+
Year = {2024},
149
+
Eprint = {arXiv:2405.05398},
150
+
category = {paper},
151
+
author = {Orozco, Rafael and Siahkoohi, Ali and Louboutin, Mathias and Herrmann, Felix J.}
0 commit comments