@@ -36,28 +36,28 @@ def command_line_options(
36
36
37
37
Parameters
38
38
----------
39
- scheduler : `~adaptive_scheduler.scheduler.BaseScheduler`
39
+ scheduler
40
40
A scheduler instance from `adaptive_scheduler.scheduler`.
41
41
database_manager
42
42
A database manager instance.
43
- runner_kwargs : dict, default: None
43
+ runner_kwargs
44
44
Extra keyword argument to pass to the `adaptive.Runner`. Note that this dict
45
45
will be serialized and pasted in the ``job_script``.
46
- goal : callable, default: None
46
+ goal
47
47
The goal passed to the `adaptive.Runner`. Note that this function will
48
48
be serialized and pasted in the ``job_script``. Can be a smart-goal
49
49
that accepts
50
50
``Callable[[adaptive.BaseLearner], bool] | int | float | datetime | timedelta | None``.
51
51
See `adaptive_scheduler.utils.smart_goal` for more information.
52
- log_interval : int, default: 300
52
+ log_interval
53
53
Time in seconds between log entries.
54
- save_interval : int, default: 300
54
+ save_interval
55
55
Time in seconds between saving of the learners.
56
- save_dataframe : bool
56
+ save_dataframe
57
57
Whether to periodically save the learner's data as a `pandas.DataFame`.
58
- dataframe_format : str
58
+ dataframe_format
59
59
The format in which to save the `pandas.DataFame`. See the type hint for the options.
60
- loky_start_method : str
60
+ loky_start_method
61
61
Loky start method, by default "loky".
62
62
63
63
Returns
@@ -94,40 +94,40 @@ class JobManager(BaseManager):
94
94
95
95
Parameters
96
96
----------
97
- job_names : list
97
+ job_names
98
98
List of unique names used for the jobs with the same length as
99
99
`learners`. Note that a job name does not correspond to a certain
100
100
specific learner.
101
- database_manager : `DatabaseManager`
101
+ database_manager
102
102
A `DatabaseManager` instance.
103
- scheduler : `~adaptive_scheduler.scheduler.BaseScheduler`
103
+ scheduler
104
104
A scheduler instance from `adaptive_scheduler.scheduler`.
105
- interval : int, default: 30
105
+ interval
106
106
Time in seconds between checking and starting jobs.
107
- max_simultaneous_jobs : int, default: 500
107
+ max_simultaneous_jobs
108
108
Maximum number of simultaneously running jobs. By default no more than 500
109
109
jobs will be running. Keep in mind that if you do not specify a ``runner.goal``,
110
110
jobs will run forever, resulting in the jobs that were not initially started
111
111
(because of this `max_simultaneous_jobs` condition) to not ever start.
112
- max_fails_per_job : int, default: 40
112
+ max_fails_per_job
113
113
Maximum number of times that a job can fail. This is here as a fail switch
114
114
because a job might fail instantly because of a bug inside your code.
115
115
The job manager will stop when
116
116
``n_jobs * total_number_of_jobs_failed > max_fails_per_job`` is true.
117
- save_dataframe : bool
117
+ save_dataframe
118
118
Whether to periodically save the learner's data as a `pandas.DataFame`.
119
- dataframe_format : str
119
+ dataframe_format
120
120
The format in which to save the `pandas.DataFame`. See the type hint for the options.
121
- loky_start_method : str
121
+ loky_start_method
122
122
Loky start method, by default "loky".
123
- log_interval : int, default: 300
123
+ log_interval
124
124
Time in seconds between log entries.
125
- save_interval : int, default: 300
125
+ save_interval
126
126
Time in seconds between saving of the learners.
127
- runner_kwargs : dict, default: None
127
+ runner_kwargs
128
128
Extra keyword argument to pass to the `adaptive.Runner`. Note that this dict
129
129
will be serialized and pasted in the ``job_script``.
130
- goal : callable, default: None
130
+ goal
131
131
The goal passed to the `adaptive.Runner`. Note that this function will
132
132
be serialized and pasted in the ``job_script``. Can be a smart-goal
133
133
that accepts
0 commit comments