Skip to content

Commit eb687f8

Browse files
committed
adapted documentation to version 0.1.4
1 parent 66f670a commit eb687f8

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

42 files changed

+123
-294
lines changed

docs/_build/docs/_static/_sphinx_javascript_frameworks_compat.js

-123
This file was deleted.

docs/_build/docs/_static/jquery.js

-2
This file was deleted.
-8.98 KB
Binary file not shown.

docs/_build/doctrees/homepage.doctree

-2.79 KB
Binary file not shown.

docs/_build/doctrees/index.doctree

-2.89 KB
Binary file not shown.

docs/_build/html/_modules/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -339,7 +339,7 @@ <h1>All modules for which code is available</h1>
339339
<div class="footer-item">
340340

341341
<p class="component-author">
342-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
342+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
343343
</p>
344344

345345
</div>

docs/_build/html/_modules/mambular/base_models/classifier.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -750,7 +750,7 @@ <h1>Source code for mambular.base_models.classifier</h1><div class="highlight"><
750750
<div class="footer-item">
751751

752752
<p class="component-author">
753-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
753+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
754754
</p>
755755

756756
</div>

docs/_build/html/_modules/mambular/base_models/distributional.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -711,7 +711,7 @@ <h1>Source code for mambular.base_models.distributional</h1><div class="highligh
711711
<div class="footer-item">
712712

713713
<p class="component-author">
714-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
714+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
715715
</p>
716716

717717
</div>

docs/_build/html/_modules/mambular/base_models/embedding_classifier.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -819,7 +819,7 @@ <h1>Source code for mambular.base_models.embedding_classifier</h1><div class="hi
819819
<div class="footer-item">
820820

821821
<p class="component-author">
822-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
822+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
823823
</p>
824824

825825
</div>

docs/_build/html/_modules/mambular/base_models/embedding_regressor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -735,7 +735,7 @@ <h1>Source code for mambular.base_models.embedding_regressor</h1><div class="hig
735735
<div class="footer-item">
736736

737737
<p class="component-author">
738-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
738+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
739739
</p>
740740

741741
</div>

docs/_build/html/_modules/mambular/base_models/regressor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -669,7 +669,7 @@ <h1>Source code for mambular.base_models.regressor</h1><div class="highlight"><p
669669
<div class="footer-item">
670670

671671
<p class="component-author">
672-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
672+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
673673
</p>
674674

675675
</div>

docs/_build/html/_modules/mambular/models/sklearn_classifier.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -1034,7 +1034,7 @@ <h1>Source code for mambular.models.sklearn_classifier</h1><div class="highlight
10341034
<div class="footer-item">
10351035

10361036
<p class="component-author">
1037-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
1037+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
10381038
</p>
10391039

10401040
</div>

docs/_build/html/_modules/mambular/models/sklearn_distributional.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -991,7 +991,7 @@ <h1>Source code for mambular.models.sklearn_distributional</h1><div class="highl
991991
<div class="footer-item">
992992

993993
<p class="component-author">
994-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
994+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
995995
</p>
996996

997997
</div>

docs/_build/html/_modules/mambular/models/sklearn_embedding_classifier.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -1058,7 +1058,7 @@ <h1>Source code for mambular.models.sklearn_embedding_classifier</h1><div class=
10581058
<div class="footer-item">
10591059

10601060
<p class="component-author">
1061-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
1061+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
10621062
</p>
10631063

10641064
</div>

docs/_build/html/_modules/mambular/models/sklearn_embedding_regressor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -994,7 +994,7 @@ <h1>Source code for mambular.models.sklearn_embedding_regressor</h1><div class="
994994
<div class="footer-item">
995995

996996
<p class="component-author">
997-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
997+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
998998
</p>
999999

10001000
</div>

docs/_build/html/_modules/mambular/models/sklearn_regressor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -938,7 +938,7 @@ <h1>Source code for mambular.models.sklearn_regressor</h1><div class="highlight"
938938
<div class="footer-item">
939939

940940
<p class="component-author">
941-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
941+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
942942
</p>
943943

944944
</div>

docs/_build/html/_modules/mambular/utils/preprocessor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -790,7 +790,7 @@ <h1>Source code for mambular.utils.preprocessor</h1><div class="highlight"><pre>
790790
<div class="footer-item">
791791

792792
<p class="component-author">
793-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
793+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
794794
</p>
795795

796796
</div>

docs/_build/html/_sources/homepage.md

+16-26
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Mambular: Tabular Deep Learning with Mamba Architectures
22

3-
Mambular is a Python package that brings the power of Mamba architectures to tabular data, offering a suite of deep learning models for regression, classification, and distributional regression tasks. Designed with ease of use in mind, Mambular models adhere to scikit-learn's `BaseEstimator` interface, making them highly compatible with the familiar scikit-learn ecosystem. This means you can fit, predict, and transform using Mambular models just as you would with any traditional scikit-learn model, but with the added performance and flexibility of deep learning.
3+
Mambular is a Python package that brings the power of Mamba architectures to tabular data, offering a suite of deep learning models for regression, classification, and distributional regression tasks. Designed with ease of use in mind, Mambular models adhere to scikit-learn's `BaseEstimator` interface, making them highly compatible with the familiar scikit-learn ecosystem. This means you can fit, predict, and evaluate using Mambular models just as you would with any traditional scikit-learn model, but with the added performance and flexibility of deep learning.
44

55
## Features
66

@@ -14,29 +14,26 @@ Mambular is a Python package that brings the power of Mamba architectures to tab
1414

1515
## Preprocessing
1616

17-
Mambular elevates the preprocessing stage of model development, employing a sophisticated suite of techniques to ensure your data is in the best shape for the Mamba architectures. Our preprocessing module is designed to be both powerful and intuitive, offering a range of options to transform your tabular data efficiently.
17+
Mambular simplifies the preprocessing stage of model development with a comprehensive set of techniques to prepare your data for Mamba architectures. Our preprocessing module is designed to be both powerful and easy to use, offering a variety of options to efficiently transform your tabular data.
1818

1919
### Data Type Detection and Transformation
2020

21-
Mambular automatically identifies the type of each feature in your dataset, applying the most suitable transformations to numerical and categorical variables. This includes:
21+
Mambular automatically identifies the type of each feature in your dataset and applies the most appropriate transformations for numerical and categorical variables. This includes:
2222

2323
- **Ordinal Encoding**: Categorical features are seamlessly transformed into numerical values, preserving their inherent order and making them model-ready.
2424
- **One-Hot Encoding**: For nominal data, Mambular employs one-hot encoding to capture the presence or absence of categories without imposing ordinality.
2525
- **Binning**: Numerical features can be discretized into bins, a useful technique for handling continuous variables in certain modeling contexts.
2626
- **Decision Tree Binning**: Optionally, Mambular can use decision trees to find the optimal binning strategy for numerical features, enhancing model interpretability and performance.
2727
- **Normalization**: Mambular can easily handle numerical features without specifically turning them into categorical features. Standard preprocessing steps such as normalization per feature are possible
2828
- **Standardization**: Similarly, Standardization instead of Normalization can be used.
29+
- **PLE**: Periodic Linear Encodings for numerical features can enhance performance for tabular DL methods.
2930

3031

3132
### Handling Missing Values
3233

33-
Our preprocessing pipeline gracefully handles missing data, employing strategies like mean imputation for numerical features and mode imputation for categorical ones, ensuring that your models receive complete data inputs without manual intervention.
34+
Our preprocessing pipeline effectively handles missing data by using mean imputation for numerical features and mode imputation for categorical features. This ensures that your models receive complete data inputs without needing manual intervention.
35+
Additionally, Mambular can manage unknown categorical values during inference by incorporating classical <UNK> tokens in categorical preprocessing.
3436

35-
### Flexible and Customizable
36-
37-
While Mambular excels in automating the preprocessing workflow, it also offers flexibility. You can customize the preprocessing steps to fit the unique needs of your dataset, ensuring that you're not locked into a one-size-fits-all approach.
38-
39-
By integrating Mambular's preprocessing module into your workflow, you're not just preparing your data for deep learning; you're optimizing it for excellence. This commitment to data quality is what sets Mambular apart, making it an indispensable tool in your machine learning arsenal.
4037

4138
## Fit a Model
4239
Fitting a model in mambular is as simple as it gets. All models in mambular are sklearn BaseEstimators. Thus the `.fit` method is implemented for all of them. Additionally, this allows for using all other sklearn inherent methods such as their built in hyperparameter optimization tools.
@@ -45,14 +42,14 @@ Fitting a model in mambular is as simple as it gets. All models in mambular are
4542
from mambular.models import MambularClassifier
4643
# Initialize and fit your model
4744
model = MambularClassifier(
48-
dropout=0.01,
49-
d_model=128,
50-
n_layers=6,
51-
numerical_preprocessing="normalization",
45+
d_model=64,
46+
n_layers=8,
47+
numerical_preprocessing="ple",
48+
n_bins=50
5249
)
5350

5451
# X can be a dataframe or something that can be easily transformed into a pd.DataFrame as a np.array
55-
model.fit(X, y, max_epochs=500, lr=1e-03, patience=25)
52+
model.fit(X, y, max_epochs=150, lr=1e-04)
5653
```
5754

5855
Predictions are also easily obtained:
@@ -94,12 +91,6 @@ Mambular introduces a cutting-edge approach to distributional regression through
9491
These distribution classes allow `MambularLSS` to flexibly model a wide variety of data types and distributions, providing users with the tools needed to capture the full complexity of their data.
9592

9693

97-
### Use Cases for MambularLSS:
98-
99-
- **Risk Assessment**: In finance or insurance, understanding the range and likelihood of potential losses is as important as predicting average outcomes.
100-
- **Demand Forecasting**: For inventory management, capturing the variability in product demand helps in optimizing stock levels.
101-
- **Personalized Medicine**: In healthcare, distributional regression can predict a range of possible patient responses to a treatment, aiding in personalized therapy planning.
102-
10394
### Getting Started with MambularLSS:
10495

10596
To integrate distributional regression into your workflow with `MambularLSS`, start by initializing the model with your desired configuration, similar to other Mambular models:
@@ -110,17 +101,16 @@ from mambular.models import MambularLSS
110101
# Initialize the MambularLSS model
111102
model = MambularLSS(
112103
dropout=0.2,
113-
d_model=256,
114-
n_layers=4,
115-
104+
d_model=64,
105+
n_layers=8,
116106
)
117107

118108
# Fit the model to your data
119109
model.fit(
120110
X,
121111
y,
122-
max_epochs=300,
123-
lr=1e-03,
112+
max_epochs=150,
113+
lr=1e-04,
124114
patience=10,
125115
family="normal" # define your distribution
126116
)
@@ -134,7 +124,7 @@ If you find this project useful in your research or in scientific publication, p
134124
```BibTeX
135125
@software{mambular2024,
136126
title={Mambular: Tabular Deep Learning with Mamba Architectures},
137-
author={Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar},
127+
author={Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee},
138128
url = {https://github.com/basf/mamba-tabular},
139129
year={2024}
140130
}

docs/_build/html/_static/documentation_options.js

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
var DOCUMENTATION_OPTIONS = {
22
URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
3-
VERSION: '0.1.3',
3+
VERSION: '0.1.4',
44
LANGUAGE: 'en',
55
COLLAPSE_INDEX: false,
66
BUILDER: 'html',

docs/_build/html/api/base_models/BaseModels.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -2026,7 +2026,7 @@ <h1>mambular.base_models<a class="headerlink" href="#mambular-base-models" title
20262026
<div class="footer-item">
20272027

20282028
<p class="component-author">
2029-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
2029+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
20302030
</p>
20312031

20322032
</div>

docs/_build/html/api/base_models/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -427,7 +427,7 @@ <h1>BaseModels<a class="headerlink" href="#basemodels" title="Permalink to this
427427
<div class="footer-item">
428428

429429
<p class="component-author">
430-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
430+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
431431
</p>
432432

433433
</div>

docs/_build/html/api/models/Models.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -1974,7 +1974,7 @@ <h1>mambular.models<a class="headerlink" href="#mambular-models" title="Permalin
19741974
<div class="footer-item">
19751975

19761976
<p class="component-author">
1977-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
1977+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
19781978
</p>
19791979

19801980
</div>

docs/_build/html/api/models/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -427,7 +427,7 @@ <h1>Models<a class="headerlink" href="#models" title="Permalink to this heading"
427427
<div class="footer-item">
428428

429429
<p class="component-author">
430-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
430+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
431431
</p>
432432

433433
</div>

docs/_build/html/api/utils/Preprocessor.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -577,7 +577,7 @@ <h1>mambular.utils<a class="headerlink" href="#mambular-utils" title="Permalink
577577
<div class="footer-item">
578578

579579
<p class="component-author">
580-
By Anton Frederik Thielmann, Soheila Samiee, Christoph Weisser, Benjamin Saefken, Manish Kumar
580+
By Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Benjamin Saefken, Soheila Samiee
581581
</p>
582582

583583
</div>

0 commit comments

Comments
 (0)