-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodels.py
530 lines (462 loc) · 16.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""Wrapper for Chemprop to make it compatible with scikit-learn."""
from typing import Any, Sequence
try:
from typing import Self
except ImportError:
from typing_extensions import Self
import numpy as np
import numpy.typing as npt
from loguru import logger
from sklearn.base import clone
from sklearn.utils._tags import (
ClassifierTags,
RegressorTags,
Tags,
)
from sklearn.utils.metaestimators import available_if
try:
from chemprop.data import MoleculeDataset, build_dataloader
from chemprop.nn.predictors import BinaryClassificationFFNBase
from lightning import pytorch as pl
except ImportError as error:
logger.error(
"Chemprop is not installed. Please install it using `pip install chemprop`."
)
logger.info(error)
from molpipeline.estimators.chemprop.abstract import ABCChemprop
from molpipeline.estimators.chemprop.component_wrapper import (
MPNN,
BinaryClassificationFFN,
BondMessagePassing,
MulticlassClassificationFFN,
RegressionFFN,
SumAggregation,
)
from molpipeline.estimators.chemprop.neural_fingerprint import ChempropNeuralFP
class ChempropModel(ABCChemprop):
"""Wrap Chemprop in a sklearn like Estimator."""
_classes_: npt.NDArray[np.int_] | None
def __init__(
self,
model: MPNN,
lightning_trainer: pl.Trainer | None = None,
batch_size: int = 64,
n_jobs: int = 1,
**kwargs: Any,
) -> None:
"""Initialize the chemprop abstract model.
Parameters
----------
model : MPNN
The chemprop model to wrap.
lightning_trainer : pl.Trainer, optional
The lightning trainer to use, by default None
batch_size : int, optional (default=64)
The batch size to use.
n_jobs : int, optional (default=1)
The number of jobs to use.
kwargs : Any
Parameters set using `set_params`.
Can be used to modify components of the model.
"""
super().__init__(
model=model,
lightning_trainer=lightning_trainer,
batch_size=batch_size,
n_jobs=n_jobs,
**kwargs,
)
self._classes_ = None
@property
def classes_(self) -> npt.NDArray[np.int_]:
"""Return the classes."""
if not self._is_classifier():
raise ValueError("Model is not a classifier.")
if self._classes_ is None:
raise ValueError("Classes are not set.")
return self._classes_
@property
def _estimator_type(self) -> str:
"""Return the estimator type."""
if self._is_classifier():
return "classifier"
return "regressor"
def _is_binary_classifier(self) -> bool:
"""Check if the model is a binary classifier.
Returns
-------
bool
True if the model is a binary classifier, False otherwise.
"""
if isinstance(self.model.predictor, BinaryClassificationFFNBase):
return True
return False
def _is_multiclass_classifier(self) -> bool:
"""Check if the model is a multiclass classifier.
Returns
-------
bool
True if the model is a multiclass classifier, False otherwise.
"""
if isinstance(self.model.predictor, MulticlassClassificationFFN):
return True
return False
def _is_classifier(self) -> bool:
"""Check if the model is a classifier.
Returns
-------
bool
True if the model is a classifier, False otherwise.
"""
return self._is_binary_classifier() or self._is_multiclass_classifier()
def __sklearn_tags__(self) -> Tags:
"""Return the sklearn tags.
Returns
-------
Tags
The sklearn tags for the model.
"""
tags = super().__sklearn_tags__()
if self._is_classifier():
tags.estimator_type = "classifier"
tags.classifier_tags = ClassifierTags()
else:
tags.estimator_type = "regressor"
tags.regressor_tags = RegressorTags()
tags.target_tags.required = True
return tags
def _predict(
self, X: MoleculeDataset # pylint: disable=invalid-name
) -> npt.NDArray[np.float64]:
"""Predict the labels.
Parameters
----------
X : MoleculeDataset
The input data.
Returns
-------
npt.NDArray[np.float64]
The predictions for the input data.
"""
self.model.eval()
test_data = build_dataloader(X, num_workers=self.n_jobs, shuffle=False)
predictions = self.lightning_trainer.predict(self.model, test_data)
prediction_array = np.vstack(predictions) # type: ignore
prediction_array = prediction_array.squeeze(axis=1)
# Check if the predictions have the same length as the input dataset
if prediction_array.shape[0] != len(X):
raise AssertionError(
"Predictions should have the same length as the input dataset."
)
# If the model is a binary classifier, return the probability of the positive class
if self._is_binary_classifier():
if prediction_array.ndim != 1:
raise ValueError(
"Binary classification model should output a single probability."
)
return prediction_array
def fit(
self,
X: MoleculeDataset,
y: Sequence[int | float] | npt.NDArray[np.int_ | np.float64],
) -> Self:
"""Fit the model to the data.
Parameters
----------
X : MoleculeDataset
The input data.
y : Sequence[int | float] | npt.NDArray[np.int_ | np.float64]
The target data.
Returns
-------
Self
The fitted model.
"""
if self._is_classifier():
self._classes_ = np.unique(y)
return super().fit(X, y)
def predict(
self, X: MoleculeDataset # pylint: disable=invalid-name
) -> npt.NDArray[np.float64]:
"""Predict the output.
Parameters
----------
X : MoleculeDataset
The input data.
Returns
-------
npt.NDArray[np.float64]
The predictions for the input data.
"""
predictions = self._predict(X)
if self._is_binary_classifier():
pred = np.zeros(len(predictions))
pred[predictions > 0.5] = 1
return pred
if self._is_multiclass_classifier():
return np.argmax(predictions, axis=1)
return predictions
@available_if(_is_classifier)
def predict_proba(
self, X: MoleculeDataset # pylint: disable=invalid-name
) -> npt.NDArray[np.float64]:
"""Predict the probabilities.
Parameters
----------
X : MoleculeDataset
The input data.
Returns
-------
npt.NDArray[np.float64]
The probabilities of the input data.
"""
if self._is_binary_classifier():
proba_class_1 = self._predict(X)
return np.vstack([1 - proba_class_1, proba_class_1]).T
return self._predict(X)
def to_encoder(self) -> ChempropNeuralFP:
"""Return the encoder for the model.
Returns
-------
ChempropNeuralFP
The encoder for the model.
"""
return ChempropNeuralFP(
model=clone(self.model), # type: ignore
lightning_trainer=self.lightning_trainer,
batch_size=self.batch_size,
n_jobs=self.n_jobs,
disable_fitting=True,
)
class ChempropClassifier(ChempropModel):
"""Chemprop model with default parameters for binary classification tasks."""
def __init__(
self,
model: MPNN | None = None,
lightning_trainer: pl.Trainer | None = None,
batch_size: int = 64,
n_jobs: int = 1,
**kwargs: Any,
) -> None:
"""Initialize the chemprop classifier model.
Parameters
----------
model : MPNN | None, optional
The chemprop model to wrap. If None, a default model will be used.
lightning_trainer : pl.Trainer, optional
The lightning trainer to use, by default None
batch_size : int, optional (default=64)
The batch size to use.
n_jobs : int, optional (default=1)
The number of jobs to use.
kwargs : Any
Parameters set using `set_params`.
Can be used to modify components of the model.
"""
if model is None:
bond_encoder = BondMessagePassing()
agg = SumAggregation()
predictor = BinaryClassificationFFN()
model = MPNN(message_passing=bond_encoder, agg=agg, predictor=predictor)
super().__init__(
model=model,
lightning_trainer=lightning_trainer,
batch_size=batch_size,
n_jobs=n_jobs,
**kwargs,
)
if not self._is_binary_classifier():
raise ValueError("ChempropClassifier should be a binary classifier.")
def set_params(self, **params: Any) -> Self:
"""Set the parameters of the model and check if it is a binary classifier.
Parameters
----------
**params
The parameters to set.
Returns
-------
Self
The model with the new parameters.
"""
super().set_params(**params)
if not self._is_binary_classifier():
raise ValueError("ChempropClassifier should be a binary classifier.")
return self
class ChempropRegressor(ChempropModel):
"""Chemprop model with default parameters for regression tasks."""
def __init__(
self,
model: MPNN | None = None,
lightning_trainer: pl.Trainer | None = None,
batch_size: int = 64,
n_jobs: int = 1,
**kwargs: Any,
) -> None:
"""Initialize the chemprop regressor model.
Parameters
----------
model : MPNN | None, optional
The chemprop model to wrap. If None, a default model will be used.
lightning_trainer : pl.Trainer, optional
The lightning trainer to use, by default None
batch_size : int, optional (default=64)
The batch size to use.
n_jobs : int, optional (default=1)
The number of jobs to use.
kwargs : Any
Parameters set using `set_params`.
Can be used to modify components of the model.
"""
if model is None:
bond_encoder = BondMessagePassing()
agg = SumAggregation()
predictor = RegressionFFN()
model = MPNN(message_passing=bond_encoder, agg=agg, predictor=predictor)
super().__init__(
model=model,
lightning_trainer=lightning_trainer,
batch_size=batch_size,
n_jobs=n_jobs,
**kwargs,
)
class ChempropMulticlassClassifier(ChempropModel):
"""Chemprop model with default parameters for multiclass classification tasks."""
def __init__(
self,
n_classes: int,
model: MPNN | None = None,
lightning_trainer: pl.Trainer | None = None,
batch_size: int = 64,
n_jobs: int = 1,
**kwargs: Any,
) -> None:
"""Initialize the chemprop multiclass model.
Parameters
----------
n_classes : int
The number of classes for the classifier.
model : MPNN | None, optional
The chemprop model to wrap. If None, a default model will be used.
lightning_trainer : pl.Trainer, optional
The lightning trainer to use, by default None
batch_size : int, optional (default=64)
The batch size to use.
n_jobs : int, optional (default=1)
The number of jobs to use.
kwargs : Any
Parameters set using `set_params`.
Can be used to modify components of the model.
Raises
------
AttributeError
If the passed model.predictor does not have an attribute n_classes.
ValueError
If the number of classes in the predictor does not match the number of classes given as attribute.
"""
if model is None:
bond_encoder = BondMessagePassing()
agg = SumAggregation()
predictor = MulticlassClassificationFFN(n_classes=n_classes)
model = MPNN(message_passing=bond_encoder, agg=agg, predictor=predictor)
if not hasattr(model.predictor, "n_classes"):
raise AttributeError(
"The predictor does not have an attribute n_classes. Please use a MulticlassClassificationFFN predictor or define n_classes."
)
if n_classes != model.predictor.n_classes:
raise ValueError(
"The number of classes in the predictor does not match the number of classes."
)
super().__init__(
model=model,
lightning_trainer=lightning_trainer,
batch_size=batch_size,
n_jobs=n_jobs,
**kwargs,
)
self._is_valid_multiclass_classifier()
@property
def n_classes(self) -> int:
"""Return the number of classes."""
return self.model.predictor.n_classes
@n_classes.setter
def n_classes(self, n_classes: int) -> None:
"""Set the number of classes.
Parameters
----------
n_classes : int
number of classes
"""
self.model.predictor.n_classes = n_classes
self.model.reinitialize_network()
def set_params(self, **params: Any) -> Self:
"""Set the parameters of the model and check if it is a multiclass classifier.
Parameters
----------
**params
The parameters to set.
Returns
-------
Self
The model with the new parameters.
"""
super().set_params(**params)
if not self._is_valid_multiclass_classifier():
raise ValueError(
"The model's predictor or the number of classes are invalid. Use a multiclass predictor and more than 2 classes."
)
return self
def fit(
self,
X: MoleculeDataset,
y: Sequence[int | float] | npt.NDArray[np.int_ | np.float64],
) -> Self:
"""Fit the model to the data.
Parameters
----------
X : MoleculeDataset
The input data.
y : Sequence[int | float] | npt.NDArray[np.int_ | np.float64]
The target data.
Returns
-------
Self
The fitted model.
"""
self._check_correct_input(y)
return super().fit(X, y)
def _check_correct_input(
self, y: Sequence[int | float] | npt.NDArray[np.int_ | np.float64]
) -> None:
"""Check if the input for the multi-class classifier is correct.
Parameters
----------
y : Sequence[int | float] | npt.NDArray[np.int_ | np.float64]
Indended classes for the dataset
Raises
------
ValueError
If the classes found in y are not matching n_classes or if the class labels do not start from 0 to n_classes-1.
"""
unique_y = np.unique(y)
log = []
if self.n_classes != len(unique_y):
log.append(
f"Given number of classes in init (n_classes) does not match the number of unique classes (found {unique_y}) in the target data."
)
if sorted(unique_y) != list(range(self.n_classes)):
err = f"Classes need to be in the range from 0 to {self.n_classes-1}. Found {unique_y}. Please correct the input data accordingly."
log.append(err)
if log:
raise ValueError("\n".join(log))
def _is_valid_multiclass_classifier(self) -> bool:
"""Check if a multiclass classifier is valid. Model FFN needs to be of the correct class and model needs to have more than 2 classes.
Returns
-------
bool
True if is a valid multiclass classifier, False otherwise.
"""
has_correct_model = isinstance(
self.model.predictor, MulticlassClassificationFFN
)
has_classes = self.n_classes > 2
return has_correct_model and has_classes