-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
496 lines (411 loc) · 19.6 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# Import required modules
import constants as cst
from Utils import audio_utils as aut
from Utils import image_utils as iut
from Utils import email_utils as eut
from Utils import utilities as ut
from FeatureMatcher import FeatureMatcher
import os
import cv2
import math
import numpy as np
import scipy as sp
from scipy.interpolate import Rbf
import matplotlib.pyplot as plt
from tqdm import tqdm
from timeit import default_timer as timer
# from numba import numba, jit, cuda
def generate_video_default_frame(video_path, calibration_file_path, file_name='default'):
"""
Generate default video frame (with no light)
:param video_path: path to the video
:param calibration_file_path: path to the intrinsics calibration file
:param file_name: file name to save the frame
"""
SAVE_PATH = "assets/" + file_name + ".png"
if os.path.isfile(SAVE_PATH):
print("Default frame already exists \n")
return SAVE_PATH
matrix, distortion = ut.get_camera_intrinsics(calibration_file_path)
# Opens the Video file
video = cv2.VideoCapture(video_path)
default_frame = None
lower_brightness = 1
for i in range(0, 90):
ret, frame = video.read()
if not ret:
raise Exception('Null frame')
frame_new = iut.undistort_image(frame, matrix, distortion)
mean_hv_ls = cv2.mean(cv2.cvtColor(frame_new, cv2.COLOR_BGR2HSV))
mean_brightness = mean_hv_ls[2] / 255
# set as default image the one with brightness near 0.5
if lower_brightness > mean_brightness > 0.5:
default_frame = frame_new.copy()
lower_brightness = mean_brightness
video.release()
# cv2.imshow('Default', default_frame)
# cv2.waitKey(0)
cv2.imwrite(SAVE_PATH, default_frame)
cv2.destroyAllWindows()
print("Default frame generated \n")
return SAVE_PATH
def sync_videos(video_static_path, video_moving_path):
from moviepy.editor import VideoFileClip
"""
Synchronize the videos and get the offset and n° of frames
:param video_static_path: path to the static video
:param video_moving_path: path to the moving video
"""
if not os.path.isfile(video_static_path):
raise Exception('Video static not found!')
if not os.path.isfile(video_moving_path):
raise Exception('Video dynamic not found!')
video_static = VideoFileClip(video_static_path)
video_moving = VideoFileClip(video_moving_path)
# get offset of the two video
video_static_offset, video_moving_offset = aut.get_audio_offset(video_static, video_moving)
# total number of frames of shortest video
tot_frames = min(iut.get_video_total_frames(video_static_path), iut.get_video_total_frames(video_moving_path))
return video_static_offset, video_moving_offset, tot_frames
def extract_video_frames(static_video_path, moving_video_path,
tot_frames, video_static_offset=0, video_moving_offset=0,
default_frame_path="default.png"):
"""
Get undistorted frames images from the video_static and extract intensities and camera pose
:param static_video_path: path to the video_static
:param moving_video_path: path to the video_moving
:param tot_frames: total number of frames of the video_static
:param video_static_offset: starting offset for the static video
:param video_moving_offset: starting offset for the moving video
:param default_frame_path: name of the default frame file
:return:
"""
matrix_static, distortion_static = ut.get_camera_intrinsics(cst.INTRINSICS_STATIC_PATH)
matrix_moving, distortion_moving = ut.get_camera_intrinsics(cst.INTRINSICS_MOVING_PATH)
# Opens the Video file
video_static = cv2.VideoCapture(static_video_path)
video_moving = cv2.VideoCapture(moving_video_path)
video_static_offset = round(video_static_offset * 30, 0) # 30 fps * offset
video_moving_offset = round(video_moving_offset * 30, 0) # 30 fps * offset
# starting from offset (for video_static sync)
frame_static_fps_count = 0
frame_static_cursor = video_static_offset # cursor of the static video frames
frame_moving_cursor = video_moving_offset # cursor of the moving video frames
# skip two seconds
# frame_static_cursor += 60
# frame_moving_cursor += 60
start_from_frame = 0 # starting from a given frame
max_frames_to_read = int(tot_frames / 8) # set a max n° of frames to read
offset = max(video_static_offset, video_moving_offset)
frame_skip = math.trunc(
(tot_frames - offset) / max_frames_to_read) # how many frames to skip from a read to another
print("Max frames to read:", max_frames_to_read)
# if start_from_frame > 0, skip frames to start from it
if 0 < start_from_frame < max_frames_to_read:
frame_static_cursor += start_from_frame * frame_skip
frame_moving_cursor += start_from_frame * frame_skip
frame_static_fps_count = int(frame_moving_cursor / 25)
frame_static_cursor += frame_static_fps_count
video_static.set(cv2.CAP_PROP_POS_FRAMES, frame_static_cursor)
video_moving.set(cv2.CAP_PROP_POS_FRAMES, frame_moving_cursor)
print("Static video starting frame:", frame_static_cursor)
print("Moving video starting frame:", frame_moving_cursor)
fm = FeatureMatcher()
# set show parameters for visual debug information
fm.setShowParams(show_static_frame=True, show_moving_frame=True,
show_rectangle_canvas=True, show_corners=True,
show_homography=False, show_light_direction=True,
debug=False)
# compute static shape detection only on default frame, since they've all the same homography
frame_default = cv2.imread(default_frame_path)
static_shape_cnts, static_shape_points = fm.computeStaticShape(frame_default)
dataset = []
failures_consecutive_count = 0
for i in tqdm(range(start_from_frame, max_frames_to_read - 1)):
ret_static, frame_static = video_static.read()
ret_moving, frame_moving = video_moving.read()
if ret_static is False or ret_moving is False:
ut.console_log('Error: Null frame')
continue
frame_static = iut.undistort_image(frame_static, matrix_static, distortion_static)
frame_moving = iut.undistort_image(frame_moving, matrix_moving, distortion_moving)
result = fm.extractFeatures(moving_img=frame_moving, static_img=frame_static,
static_shape_points=static_shape_points, static_shape_cnts=static_shape_cnts,
wait_key=False)
if result is not False:
dataset.append(result)
failures_consecutive_count = 0
else:
failures_consecutive_count += 1
if failures_consecutive_count > 4:
fm.resetPreviousCorners()
failures_consecutive_count = 0
# every 25 frames skip a frame of the static video to keep sync
'''
if frame_moving_cursor > 0:
fps_count = int(frame_moving_cursor / 25)
if fps_count > frame_static_fps_count:
frame_static_fps_count = fps_count
frame_static_cursor += 1
'''
# skip frames
frame_static_cursor += frame_skip
frame_moving_cursor += frame_skip
video_static.set(cv2.CAP_PROP_POS_FRAMES, frame_static_cursor)
video_moving.set(cv2.CAP_PROP_POS_FRAMES, frame_moving_cursor)
video_static.release()
video_moving.release()
cv2.destroyAllWindows()
return dataset
# @jit(forceobj=True)
def compute_intensities(data, first_only=False):
"""
Compute light vectors intensities foreach frame pixel
:param data: array of tuples (intensities, camera_position), for each frame
intensities: array of intensities for each pixel of the ROI, for the current frame
camera_position: tuple (x, y, z), for the current frame
:param first_only: compute and show only first pixel evaluation
:return: (pixels_lx, pixels_ly, pixels_intensity), each array contain the values of each pixel for each (lx, ly)
"""
if data is None or len(data) <= 0:
raise Exception("Error computing intensities: results are empty")
print("Computing intensities values:")
range_val = cst.ROI_DIAMETER
if first_only:
ut.console_log("Intensities of first pixel only", "yellow")
range_val = 1
# define 3 vectors to store pixels light vectors and intensity values
# for each frame we'll compute and save each pixel light vector and intensity
pixels_lx = np.empty((range_val, range_val, len(data)), dtype=np.float32)
pixels_ly = np.empty((range_val, range_val, len(data)), dtype=np.float32)
pixels_intensity = np.empty((range_val, range_val, len(data)), dtype=np.int32)
for i in tqdm(range(len(data))):
frame_data = data[i]
intensities = frame_data[0]
camera_position = frame_data[1]
for y in range(range_val):
for x in range(range_val):
# compute light vector of pixel with coordinates p
p = (x, y, 0)
l = (camera_position - p) / np.linalg.norm(camera_position - p)
pixels_lx[y][x][i] = l[0]
pixels_ly[y][x][i] = l[1]
pixels_intensity[y][x][i] = intensities[y][x]
if first_only:
# plot only first pixel values, for debug
lx = pixels_lx[0][0]
ly = pixels_ly[0][0]
val = pixels_intensity[0][0]
plt.scatter(lx, ly, c=val)
plt.xlabel('lx')
plt.ylabel('ly')
plt.show()
pixels_data = (pixels_lx, pixels_ly, pixels_intensity)
return pixels_data
def _interpolate_RBF(x_coarse, y_coarse, x_fine, y_fine, intensity_values):
"""
interpolate coarse values on fine values domain using Linear Radial Basis Function
:param x_coarse:
:param y_coarse:
:param x_fine:
:param y_fine:
:param intensity_values:
:return:
"""
rbfi = Rbf(x_coarse, y_coarse, intensity_values, function='linear')
return rbfi(x_fine, y_fine)
def _interpolate_PTM(x_coarse, y_coarse, xy_fine, intensity_values):
"""
interpolate coarse values on fine values domain using Polynomial Texture Maps
:param x_coarse: coarse x values
:param y_coarse: coarse y values
:param xy_fine: fine domain to interpolate
:param intensity_values:
:return:
"""
'''
our system is composed of: l_matrix * a_matrix = L_matrix
:var l_matrix: PTM matrix
:var L_matrix: luminance matrix
:var a_matrix: coefficients matrix
'''
# compute l_matrix and L_matrix first
l_matrix = []
L_matrix = []
for i in range(len(intensity_values)):
# compute the PTM row for l_matrix
lu, lv = x_coarse[i], y_coarse[i]
row = (lu ** 2, lv ** 2, lu * lv, lu, lv, 1.)
l_matrix.append(row)
# add Luminance to L_matrix
L_matrix.append(intensity_values[i])
l_matrix = np.array(l_matrix)
L_matrix = np.array(L_matrix)
# now we'll fine the a_matrix solving A * a = L
# solve with svd decomposition
u, s, v = np.linalg.svd(l_matrix)
c = np.dot(u.T, L_matrix)
w = np.divide(c[:len(s)], s)
a_matrix = np.dot(v.T, w)
# results contains our interpolation result
results = np.empty((len(xy_fine), len(xy_fine)))
v = 0
for lv in xy_fine:
u = 0
for lu in xy_fine:
# the tuple (lu, lv) means (x, y)
l0 = a_matrix[0] * (lu ** 2)
l1 = a_matrix[1] * (lv ** 2)
l2 = a_matrix[2] * (lu * lv)
l3 = a_matrix[3] * lu
l4 = a_matrix[4] * lv
L = l0 + l1 + l2 + l3 + l4 + a_matrix[5]
results[v][u] = L
u += 1
v += 1
return results
# @jit(forceobj=True)
def interpolate_intensities(data, interpolate_PTM=False, first_only=False):
"""
Interpolate pixel intensities
:param data: array of tuples (pixels_lx, pixels_ly, pixels_intensity), for each pixel
pixels_lx: list of lx coordinates for each value, for the current pixel
pixels_ly: list of ly coordinates for each value, for the current pixel
pixels_intensity: list of intensities, for current pixel
:param interpolate_PTM: if True use PTM as interpolation function, otherwise use RBF
:param first_only: compute and show only first pixel evaluation
:return: an array of interpolated values for each pixel and light vector: interpolated_intensities[y][x][ly][lx] => intensity
"""
if data is None or len(data) != 3:
raise Exception("Error computing interpolation: results are empty or invalid")
print("Computing interpolation values:")
range_val = cst.ROI_DIAMETER
if first_only:
range_val = 1
pixels_lx = data[0]
pixels_ly = data[1]
pixels_intensity = data[2]
# define interpolation domain
yi, xi = np.mgrid[-1:1:cst.INTERPOLATION_PARAM, -1:1:cst.INTERPOLATION_PARAM]
yi = np.around(yi, decimals=2)
xi = np.around(xi, decimals=2)
interpolated_intensities = [[[] for y in range(range_val)] for x in range(range_val)]
for y in tqdm(range(range_val)):
for x in range(range_val):
lx = pixels_lx[y][x]
ly = pixels_ly[y][x]
val = pixels_intensity[y][x]
if interpolate_PTM:
interpolated_intensities[y][x] = _interpolate_PTM(x_coarse=lx, y_coarse=ly,
xy_fine=xi[0],
intensity_values=val)
else:
interpolated_intensities[y][x] = _interpolate_RBF(x_coarse=lx, y_coarse=ly,
x_fine=xi, y_fine=yi,
intensity_values=val)
if first_only:
# plot only first pixel values, for debug
val = interpolated_intensities[0][0]
plt.scatter(xi, yi, c=val)
plt.xlabel('lx')
plt.ylabel('ly')
plt.show()
return interpolated_intensities
def prepare_images_data(data, first_only=False):
"""
Prepare images for each camera position (normalized) with interpolated values
:param data: list of interpolated values for each pixel (y,x) and each light direction (ly,lx)
interpolation_intensities[y][x][ly][lx] = intensity
:param first_only: compute only first pixel evaluation
:return: an array of images foreach light position (normalized), interpolated_images[ly][lx][y][x] => intensity
"""
if data is None or len(data) <= 0:
raise Exception("Error preparing images: results are empty")
print("Preparing images values:")
# define interpolation domain
yi, xi = np.mgrid[-1:1:cst.INTERPOLATION_PARAM, -1:1:cst.INTERPOLATION_PARAM]
xi = np.around(xi, decimals=2)
yi = xi[0]
xi = xi[0]
range_val = cst.ROI_DIAMETER
if first_only:
range_val = 1
# prepare images for each position
interpolated_images = [[[] for y in range(len(yi))] for x in range(len(xi))]
for ly in tqdm(range(len(yi))):
for lx in range(len(xi)):
# get image for current light position (lx, ly)
img = np.empty((range_val, range_val), dtype=np.int32)
for y in range(range_val):
for x in range(range_val):
img[y][x] = data[y][x][ly][lx]
# save interpolated build image on (lx, ly)
interpolated_images[ly][lx] = img
return interpolated_images
def compute(video_name='coin1', from_storage=False, storage_filepath=None, interpolate_PTM=False,
notification_email=True, debug=False):
"""
Main function
:param video_name: name of the video to take
:param from_storage: if True read results from a saved file, otherwise compute results from skratch
:param storage_filepath: if None is set read results from default filepath, otherwise it must be a filepath to a valid results file
:param interpolate_PTM: use PTM interpolation function instead of RBF
:param notification_email: send a notification email when finished
:param debug: compute a debug run with only the first pixel
"""
results_frames_filepath = "assets/frames_results_{}".format(video_name)
results_interpolation_filepath = "assets/interpolation_results_{}".format(video_name)
ut.console_log("Step 1: Computing frames values", 'blue', newline=True)
if from_storage is True:
# read a pre-saved results file
if storage_filepath is not None:
results_frames_filepath = storage_filepath
results_frames = ut.read_from_file(results_frames_filepath)
else:
# compute results from skratch
print("Generating frames values")
video_static_path = cst.ASSETS_STATIC_FOLDER + '/{}.mov'.format(video_name)
video_moving_path = cst.ASSETS_MOVING_FOLDER + '/{}.mp4'.format(video_name)
# extract features directly from video, without saving frame images
video_static_offset, video_moving_offset, tot_frames = sync_videos(video_static_path, video_moving_path)
# set default frame filename
default_frame_name = 'default_{}'.format(video_name)
# generate default frame from static video
default_frame_path = generate_video_default_frame(video_path=video_static_path,
calibration_file_path=cst.INTRINSICS_STATIC_PATH,
file_name=default_frame_name)
results_frames = extract_video_frames(static_video_path=video_static_path,
moving_video_path=video_moving_path,
tot_frames=tot_frames,
video_moving_offset=video_moving_offset,
video_static_offset=video_static_offset,
default_frame_path=default_frame_path)
np.array(results_frames)
# write frames results on file
ut.write_on_file(results_frames, results_frames_filepath)
if debug:
ut.console_log("Notice: computing in debug mode (first pixel only)", "yellow")
ut.console_log("Step 2: Computing pixels intensities", 'blue', newline=True)
data = compute_intensities(results_frames, first_only=debug)
ut.console_log("Step 3: Computing interpolation", 'blue', newline=True)
results_interpolation = interpolate_intensities(data, interpolate_PTM=interpolate_PTM, first_only=debug)
ut.console_log("Step 4: Preparing images data", 'blue', newline=True)
results_images = prepare_images_data(results_interpolation, first_only=debug)
if debug is False:
ut.write_on_file(results_images, results_interpolation_filepath, compressed=False)
if notification_email:
eut.send_email(receiver_email="[email protected]",
message_subject="RTI Notification",
message_txt="Interpolation finished")
ut.console_log("OK. Computation completed", 'green', newline=True)
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
coin = 1
storage_results_save = "assets/frames_results_coin{}".format(coin)
start = timer()
compute(video_name='coin{}'.format(coin), from_storage=False, storage_filepath=storage_results_save,
interpolate_PTM=False, notification_email=True, debug=False)
time = round(timer() - start, 2)
minutes = int(time / 60)
seconds = time - (minutes * 60)
print("Computation duration: {} m {} s".format(minutes, seconds))