-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathgaussian_naive_bayes.py
25 lines (19 loc) · 998 Bytes
/
gaussian_naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
class GaussianNB:
def fit(self, X, y, epsilon = 1e-10):
self.y_classes, y_counts = np.unique(y, return_counts=True)
self.x_classes = np.array([np.unique(x) for x in X.T])
self.phi_y = 1.0 * y_counts/y_counts.sum()
self.u = np.array([X[y==k].mean(axis=0) for k in self.y_classes])
self.var_x = np.array([X[y==k].var(axis=0) + epsilon for k in self.y_classes])
return self
def predict(self, X):
return np.apply_along_axis(lambda x: self.compute_probs(x), 1, X)
def compute_probs(self, x):
probs = np.array([self.compute_prob(x, y) for y in range(len(self.y_classes))])
return self.y_classes[np.argmax(probs)]
def compute_prob(self, x, y):
c = 1.0 /np.sqrt(2.0 * np.pi * (self.var_x[y]))
return np.prod(c * np.exp(-1.0 * np.square(x - self.u[y]) / (2.0 * self.var_x[y])))
def evaluate(self, X, y):
return (self.predict(X) == y).mean()