-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstationary_sampling.py
386 lines (318 loc) · 15.1 KB
/
stationary_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from file_read_backwards import FileReadBackwards
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as ani
from treeTools.rpiTools import *
import sys, getopt
import keyboard
import time
import itertools
import getopt
### For RaspPI with ROS installed ###
def get_mark_size(dbh_list):
bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
width_in, height_in = bbox.width, bbox.height # inches
width_pix, height_pix = width_in*fig.dpi, height_in*fig.dpi
ax_size = plt.axis()
width_mm = (ax_size[1]-ax_size[0])
# height_mm = (ax_size[3]-ax_size[2])
mark_sizes = [(4*dbh*width_pix/width_mm) for dbh in dbh_list]
return mark_sizes
def data_gen():
def generate_data_from_scan(strings, handle):
global veri_time_list, save_time
flag_pass = 0
# break_flag = 1
for line in handle:
line = line.strip()
if line.startswith(strings[0]):
scan_str = line.split("[")[1]
scan_str = scan_str.split("]")[0]
scan_lst = scan_str.split(", ")
add_scan = [i for i in scan_lst]
dist = add_scan[step_start:step_end]
flag_pass = 1
if line.startswith(strings[1]) and flag_pass:
nsecs = line.split()[1]
while len(nsecs) < 9:
nsecs = '0' + nsecs
if line.startswith(strings[2]) and flag_pass:
secs = line.split()[1]
save_time = int(secs + nsecs)
yield [dist]
with FileReadBackwards(scanFile) as handle:
for gen in generate_data_from_scan(["ranges:", "nsecs:", "secs:"], handle):
#break_flag = 1
#yield gen[0]
break
yield gen[0]
def keypress(event):
global over_color, save_x_list, save_y_list, save_flag, veri_flag, veri_dbh_list, veri_time_list, \
save_time_list, save_dbh_list, veri_x_list, veri_y_list
if event.key == 'm':
over_color = 'indigo'
save_flag = 1
veri_flag = 0
elif event.key == 'v' and not veri_flag:
save_flag = 0
veri_flag = 1
over_color = 'maroon'
elif event.key == 'p':
#print(veri_dbh_list)
print(len(veri_dbh_list))
print(len(veri_x_list))
print(len(veri_y_list))
with open(writeFile, 'a') as file:
file.write('----------------------\n')
file.write(str(veri_time_list))
file.write('\n')
file.write(str(veri_dbh_list))
file.write('\n')
file.write(str(veri_x_list))
file.write('\n')
file.write(str(veri_y_list))
file.write('\n')
veri_time_list = []
veri_dbh_list = []
veri_x_list = []
veri_y_list = []
def verify(event):
global x, y, veri_flag, save_time_list, save_x_list, save_y_list, save_dbh_list, cnt, resolved_mark_size, \
resolved_x, resolved_y, resolved_diameters, veri_x_list, veri_y_list, veri_dbh_list, veri_time_list, distance_maximum
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
if not veri_flag:
return
if cnt == 0:
resolved_x, resolved_y, resolved_diameters = resolveCircles(save_x_list, save_y_list, save_dbh_list)
if cnt < len(resolved_x):
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
resolved_mark_size = get_mark_size(resolved_diameters)
plt.scatter(resolved_x[cnt], resolved_y[cnt], c='violet', s=(resolved_mark_size[cnt]))
if event.key == 'k':
veri_time_list.append(save_time_list[5])
veri_x_list.append(resolved_x[cnt])
veri_y_list.append(resolved_y[cnt])
veri_dbh_list.append(resolved_diameters[cnt])
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
resolved_mark_size = get_mark_size(resolved_diameters)
plt.scatter(resolved_x[cnt], resolved_y[cnt], c='lime', s=(resolved_mark_size[cnt]), alpha=0.5)
print(resolved_diameters[cnt])
cnt += 1
elif event.key == 't':
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
resolved_mark_size = get_mark_size(resolved_diameters)
plt.scatter(resolved_x[cnt], resolved_y[cnt], marker = 'x', c='red', s=(resolved_mark_size[cnt]))
cnt += 1
elif event.key == 'r':
return
fig.clear()
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
plt.scatter(x, y, c='cadetblue', s=1)
resolved_mark_size = get_mark_size(resolved_diameters)
try:
plt.scatter(resolved_x[cnt], resolved_y[cnt], c='violet', s=(resolved_mark_size[cnt]))
plt.scatter(resolved_x, resolved_y, facecolors ='none', edgecolors='darkorange', s=(resolved_mark_size))
except BaseException:
plt.scatter(resolved_x, resolved_y, facecolors ='none', edgecolors='darkorange', s=(resolved_mark_size))
for i in range(cnt):
if resolved_diameters[i] not in veri_dbh_list:
plt.scatter(resolved_x[i], resolved_y[i], marker = 'x', c='red', s=(resolved_mark_size[i]))
else:
plt.scatter(resolved_x[i], resolved_y[i], c='lime', s=(resolved_mark_size[i]), alpha=0.5)
#plt.axis([-distance_maximum, distance_maximum, -distance_maximum, distance_maximum])
#plt.gca().set_aspect('equal')
else:
print('escape')
cnt = 0
veri_flag = 0
save_flag = 0
save_time_list = []
save_dbh_list = []
save_x_list = []
save_y_list = []
#overlay = plt.scatter(save_x_list, save_y_list, marker = 'x', c='white', s=0.0001)
#plt.gca().set_aspect('equal')
return
def animate(dist, angles):
global x, y, x_over, y_over, mark_size, save_flag, veri_flag, save_time_list, save_dbh_list, save_x_list, \
save_y_list, save_time, distance_maximum
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
if veri_flag:
fig.canvas.mpl_connect('key_press_event', verify)
return
fig.canvas.mpl_connect('key_press_event', keypress)
angles = np.array(angles)
try:
distances = np.array(dist, dtype=np.float32)
except:
pass
try:
if len(distances) == step_end-step_start:
distances = 1000.*distances
x = distances*np.sin(angles)
y = distances*np.cos(angles)
stepsList, distList, dbhList, centerDistList, centerStepList = calculateTrees(distances, step_start, step_end, distance_maximum, ratio_minimum, ratio_maximum, limit_noise, diameter_minimum, diameter_maximum)
fig.clear()
plt.gca().set_aspect('equal')
plt.plot(0, 0, 'k+')
col = []
for st in range(step_start, step_end):
if st-step_start in [j for i in stepsList for j in i]:
col.append('blue')
else:
col.append('cadetblue')
plt.scatter(x, y, c=col, s=1)
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
ang_over = np.zeros(len(centerStepList))
for i in range(len(ang_over)):
step = centerStepList[i]
ang_over[i] = math.radians((540 - step - step_start)*360/1440) if step <= 540 else math.radians((1980 - step - step_start)*360/1440)
x_over = centerDistList*np.sin(ang_over)
y_over = centerDistList*np.cos(ang_over)
mark_size = get_mark_size(dbhList)
plt.scatter(x_over, y_over, c=over_color, s=(mark_size), alpha=0.5)
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
ax.set(xscale = 'linear', yscale = 'linear',
xlim = (-distance_maximum, distance_maximum),
ylim = (-distance_maximum, distance_maximum),
autoscale_on = False)
plt.gca().set_aspect('equal')
print(dbhList)
if save_flag:
save_x_list.append(x_over)
save_y_list.append(y_over)
save_dbh_list.append(dbhList)
save_time_list.append(save_time)
except:
pass
def main(argv):
global scanFile, writeFile, step_start, step_end, distance_maximum, ratio_minimum, ratio_maximum, limit_noise, \
diameter_minimum, diameter_maximum, time_list, distances, angles, x, y, save_time, save_time_list, \
save_dbh_list, save_x_list, save_y_list, veri_time_list, veri_dbh_list, veri_x_list, veri_y_list, cnt, \
veri_flag, save_flag, over_color, resolved_x, resolved_y, animation, fig, ax
# DEFAULT PARAMETERS, ONLY input_file and output_file required arguments
scanFile = '' # file to read (output of scan from urg_node in ROS
writeFile = '' # file to write to for post processing
step_start = 0 # smallest angle (step number) on LiDAR scanner to start interpreting
step_end = 1080 # largest angle (step number) on LiDAR scanner to stop interpreting
distance_maximum = 3000 # maximum distance from LiDAR to interpret from (cm)
ratio_minimum = 5*1440 # minimum ratio of steps/radians to consider a 'tree' (i.e. how flat a measured object can be
ratio_maximum = 150*1500 # maximum ratio of steps/radians to consider a 'tree' (i.e. how steep an object can be)
limit_noise = 35 # max distance the center of an object can deviate from each time step
diameter_minimum = 2*25.4 # minimum allowable diameter of a tree to consider
diameter_maximum = 60*25.4 # maximum allowable diamter of a tree to consider
helpstr = """
read_scan.py -i <input_file> -o <output_file>, --s <step_start>, -e <step_end>, -x <maximum_distance>,
-r <minimum ratio>, -a <maximum_ratio>, -l <noise_limit>, -d <minimum_diameter>, -b <maximum_diameter>,
"""
try:
opts, args = getopt.getopt(argv, "hi:o:s:e:x:r:a:l:d:b:", ["ifile=", "ofile="])
except getopt.GetoptError:
print('scanVis.py -i <inputfile> -o <outputfile>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('scanVis.py -i <input_file> -o <output_file>')
sys.exit()
elif opt in ("-i", "--input_file"):
scanFile = arg
elif opt in ("-o", "--output_file"):
writeFile = arg
elif opt in ("-s", "--step_start"):
step_start = arg
elif opt in ("e", "--step_end"):
step_end = arg
elif opt in ("x", "--maximum_distance"):
distance_maximum = arg
elif opt in ("-r", "--minimum_ratio"):
ratio_minimum = arg
elif opt in ("-a", "--maximum_ratio"):
ratio_maximum = arg
elif opt in ("-l", "--noise_limit"):
limit_noise = arg
elif opt in ("-d", "--minimum_diameter"):
diameter_minimum = arg
elif opt in ("-b", "--maximum_diameter"):
diameter_maximum = arg
else:
print('"{}" is not a valid argument'.format(opt))
print(helpstr)
writer = ani.writers['ffmpeg']
writer = writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
time_list = []
distances = []
angles = []
x = []
y = []
save_time = 0
save_time_list = []
save_dbh_list = []
save_x_list = []
save_y_list = []
veri_time_list = []
veri_dbh_list = []
veri_x_list = []
veri_y_list = []
for i in range(step_start, step_end):
if i <= 540:
ang = math.radians((540 - i) * 360 / 1440)
else:
ang = math.radians((1980 - i) * 360 / 1440)
angles.append(ang)
plt.ioff()
# fig = plt.figure()
fig, ax = plt.subplots()
# plt.axis([-distance_maximum, distance_maximum, -distance_maximum, distance_maximum])
# ax = fig.add_subplot(1,1,1)
ax.set(xscale='linear', yscale='linear',
xlim=(-distance_maximum, distance_maximum),
ylim=(-distance_maximum, distance_maximum),
autoscale_on=False)
plt.gca().set_aspect('equal')
plt.scatter([-distance_maximum, distance_maximum], [-distance_maximum, distance_maximum], c='white', s=0.0001)
over_color = 'maroon'
save_flag = 0
veri_flag = 0
cnt = 0
resolved_x, resolved_y, resolved_diameters, resolved_mark_size = [], [], [], []
animation = ani.FuncAnimation(fig, animate, frames=data_gen, fargs=([angles]), interval=1, repeat=True)
# animation.save('im.mp4', writer=writer)
plt.show()
if __name__ == "__main__":
main(sys.argv[1:])